Suppr超能文献

先前的协调解决方案塑造了冗余任务中的运动学习和迁移。

Prior coordination solutions shape motor learning and transfer in redundant tasks.

机构信息

Department of Informatics, Bioengineering, Robotics and System Engineering, University of Genova, Genova, Italy.

Department of Informatics, Bioengineering, Robotics and System Engineering, University of Genova, Genova, Italy; RAISE Ecosystem, Genova, Italy.

出版信息

Neuroscience. 2024 Nov 12;560:158-166. doi: 10.1016/j.neuroscience.2024.09.026. Epub 2024 Sep 14.

Abstract

Motor learning does not occur on a 'blank slate', but in the context of prior coordination solutions. The role of prior coordination solutions is likely critical in redundant tasks where there are multiple solutions to achieve the task goal - yet their influence on subsequent learning is currently not well understood. Here we addressed this issue by having human participants learn a redundant virtual shuffleboard task, where they held a bimanual manipulandum and made a discrete throwing motion to slide a virtual puck towards a target. The task was redundant because the distance traveled by the puck was determined by the sum of the left- and right-hand speeds at the time of release. On the first day, 37 participants in different groups practiced symmetric or asymmetric solutions. On the second day, all participants transferred to a common criterion task, which required an asymmetric solution. Results showed that: (i) the symmetry of the practiced solution affected motor variability during practice, with more asymmetric solutions showing higher exploration of the null space, (ii) when transferring to the common criterion task, participants in the symmetric group showed much higher null space exploration, and (iii) when no constraints were placed on the solution, participants tended to return to the symmetric solution regardless of the solution originally practiced. Overall, these results suggest that the stability of prior coordination solutions plays an important role in shaping learning in redundant motor tasks.

摘要

运动学习并非在“空白画板”上进行,而是在先前协调解决方案的背景下进行。先前协调解决方案的作用在具有多个解决方案来实现任务目标的冗余任务中可能至关重要——但目前人们对其对后续学习的影响还不太了解。在这里,我们通过让人类参与者学习一项冗余的虚拟飞镖游戏任务来解决这个问题,在这个任务中,他们握住双手操纵杆并进行离散投掷动作,以使虚拟冰球滑向目标。这项任务是冗余的,因为冰球的行进距离由释放时左手和右手速度的总和决定。在第一天,不同组别的 37 名参与者练习了对称或非对称的解决方案。在第二天,所有参与者都转移到了一个共同的标准任务,这个任务需要一个非对称的解决方案。结果表明:(i) 练习解决方案的对称性会影响练习期间的运动变异性,具有更非对称解决方案的参与者会探索更多的零空间;(ii) 在转移到共同标准任务时,练习对称解决方案的参与者表现出更高的零空间探索;(iii) 当对解决方案没有限制时,无论最初练习的解决方案是什么,参与者往往会回到对称解决方案。总体而言,这些结果表明先前协调解决方案的稳定性在塑造冗余运动任务的学习中起着重要作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验