Custance Oscar, Ventura-Macias Emiliano, Stetsovych Oleksandr, Romero-Muñiz Carlos, Shimizu Tomoko K, Pou Pablo, Abe Masayuki, Hayashi Hironobu, Ohkubo Tadakatsu, Kawai Shigeki, Perez Ruben
National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan.
Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, Madrid 28049, Spain.
ACS Nano. 2024 Oct 1;18(39):26759-26769. doi: 10.1021/acsnano.4c07034. Epub 2024 Sep 17.
Understanding how carbon dioxide (CO) behaves and interacts with surfaces is paramount for the development of sensors and materials to attempt CO mitigation and catalysis. Here, we combine simultaneous atomic force microscopy (AFM) and scanning tunneling microscopy (STM) using CO-functionalized probes with density functional theory (DFT)-based simulations to gain fundamental insight into the behavior of physisorbed CO molecules on a gold(111) surface that also contains one-dimensional metal-organic chains formed by 1,4-phenylene diisocyanide (PDI) bridged by gold (Au) adatoms. We resolve the structure of self-assembled CO islands, both confined between the PDI-Au chains as well as free-standing on the surface and reveal a chiral arrangement of CO molecules in a windmill-like structure that encloses a standing-up CO molecule and other foreign species existing at the surface. We identify these species by the comparison of height-dependent AFM and STM imaging with DFT-calculated images and clarify the origin of the kagome tiling exhibited by this surface system. Our results show the complementarity of AFM and STM using functionalized probes and their potential, when combined with DFT, to explore greenhouse gas molecules at surface-supported model systems.
了解二氧化碳(CO)的行为及其与表面的相互作用对于开发用于减少CO排放和催化的传感器及材料至关重要。在此,我们将使用CO功能化探针的同步原子力显微镜(AFM)和扫描隧道显微镜(STM)与基于密度泛函理论(DFT)的模拟相结合,以深入了解物理吸附在金(111)表面上的CO分子的行为,该表面还包含由金(Au)吸附原子桥接的1,4 - 亚苯基二异氰化物(PDI)形成的一维金属有机链。我们解析了自组装CO岛的结构,这些CO岛既限制在PDI - Au链之间,也独立存在于表面,并揭示了CO分子以风车状结构的手性排列,该结构包围着一个直立的CO分子以及表面存在的其他外来物种。我们通过将高度依赖的AFM和STM成像与DFT计算图像进行比较来识别这些物种,并阐明该表面系统所呈现的 kagome 晶格的起源。我们的结果表明,使用功能化探针的AFM和STM具有互补性,并且当与DFT结合时,它们在探索表面支撑模型系统中的温室气体分子方面具有潜力。