Membrane Science and Technology Research Group, Department of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.
Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Johannesburg, South Africa.
Water Environ Res. 2024 Sep;96(9):e11126. doi: 10.1002/wer.11126.
This work presents the results of an investigation on the physiochemical and structural characteristics of polyacrylonitrile (PAN) nanofiltration (NF) membranes prepared using a novel concept of binary solvents for nickel (Ni) removal from wastewater streams. The thermodynamic and kinetic aspects are emphasized aiming to optimize dope formulation, membrane performance, and durability. The fabricated membranes were characterized by scanning electron microscopy (SEM), porosimetry, tensile stress/strain, and flux and rejection. Results revealed that the use of an equal (1:1) mixture of n-methyl-2-pyrrolidone (NMP) and dimethylformamide (DMF) as dope solvents led to the formation of membranes with enhanced performance, offering pure water flux of 2.33 L·m·h·bar and Ni rejection of 90.84%. Moreover, the incorporation of 0.5 wt.% PEG as a pore-forming agent to the dope solution further boosted pure water flux to 4.97 L·m·h·bar with negligible impact on Ni rejection. Besides attractive performance, the adopted strategy offered membranes of exceptionally high flexibility with no sign of defect or failure especially during module fabrication and testing enabling smooth and hassle-free scale-up and extension to other applications. PRACTITIONER POINTS: Optimized solvent mixture: A 1:1 blend of n-methyl-2-pyrrolidone (NMP) and dimethylformamide (DMF) as solvents resulted in enhanced membrane performance. High flux and Ni rejection: The fabricated membranes exhibited a pure water flux of 2.33 L·m·h·bar and a remarkable Ni rejection of 90.84%. PEG enhancement: Incorporating 0.5 wt.% PEG as a pore-forming agent further improved the membrane's pure water flux to 4.97 L·m·h·bar, without compromising Ni rejection. Exceptional flexibility: The adopted strategy yielded membranes with exceptional flexibility, making them suitable for scale-ups and other applications.
本文介绍了一项关于使用新型二元溶剂体系从废水中去除镍的研究结果,该体系用于制备聚丙烯腈 (PAN) 纳滤 (NF) 膜。本研究强调了热力学和动力学方面,旨在优化铸膜液配方、膜性能和耐久性。通过扫描电子显微镜 (SEM)、孔隙率分析、拉伸应力/应变、通量和截留率对制备的膜进行了表征。结果表明,采用 N-甲基-2-吡咯烷酮 (NMP) 和二甲基甲酰胺 (DMF) 等比例 (1:1) 的混合物作为铸膜液溶剂,可形成性能增强的膜,纯水通量达到 2.33 L·m·h·bar,镍截留率达到 90.84%。此外,在铸膜液中加入 0.5wt.%的聚乙二醇 (PEG) 作为成孔剂,可进一步提高纯水通量至 4.97 L·m·h·bar,而对镍截留率影响可忽略不计。除了具有吸引力的性能外,所采用的策略还提供了具有极高柔韧性的膜,在模块制造和测试过程中没有出现缺陷或失效的迹象,特别有利于顺利进行放大和扩展到其他应用。
优化的溶剂混合物:NMP 和 DMF 等比例 (1:1) 的混合物作为溶剂,可提高膜性能。
高通量和高镍截留率:所制备的膜具有 2.33 L·m·h·bar 的纯水通量和 90.84%的高镍截留率。
PEG 增强:加入 0.5wt.%的 PEG 作为成孔剂,可进一步将膜的纯水通量提高至 4.97 L·m·h·bar,而不影响镍截留率。
卓越的柔韧性:所采用的策略制备的膜具有卓越的柔韧性,适用于放大和其他应用。