Suppr超能文献

带隙调制的纤锌矿型硫化铜(Covellite-CuS)纳米结构中的载流子动力学

Charge Carrier Dynamics in Bandgap Modulated Covellite-CuS Nanostructures.

作者信息

Jagadish Kusuma, Godha Akshath, Pandit Bidhan, Jadhav Yogesh, Dutta Arpita, Satapathy Jyotiprakash, Bhatt Himanshu, Singh Balpartap, Makineni Surendra Kumar, Pal Shovon, Rondiya Sachin R

机构信息

Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012, India.

Department of Materials, Imperial College London, London, SW7 2AZ, UK.

出版信息

Small. 2024 Dec;20(49):e2405859. doi: 10.1002/smll.202405859. Epub 2024 Sep 17.

Abstract

Copper Sulfide (CuS) semiconductors have garnered interest, but the effect of transition metal doping on charge carrier kinetics and bandgap remains unclear. In this study, the interactions between dopant atoms (Nickel, Cobalt, and Manganese) and the CuS lattice using spectroscopy and electrochemical analysis are explored. The findings show that sp-d exchange interactions between band electrons and the dopant ions, which replace Cu, are key to altering the material's properties. Specifically, these interactions result in a reduced bandgap by shifting the conduction and valence band edges and increasing carrier concentration. It is observed that undoped CuS nanoflowers exhibit a carrier lifetime of 2.16 ns, whereas Mn-doped CuS shows an extended lifetime of 2.62 ns. This increase is attributed to longer carrier scattering times (84 ± 5 fs for Mn-CuS compared to 53 ± 14 fs for CuS) and slower trapping (∼1.5 ps) with prolonged de-trapping (∼100 ps) rates. These dopant-induced energy levels enhance mobility and carrier lifetime by reducing recombination rates. This study highlights the potential of doped CuS as cathode materials for sodium-ion batteries and emphasizes the applicability of metal sulfides in energy solutions.

摘要

硫化铜(CuS)半导体已引起关注,但过渡金属掺杂对电荷载流子动力学和带隙的影响仍不清楚。在本研究中,利用光谱学和电化学分析方法探究了掺杂原子(镍、钴和锰)与CuS晶格之间的相互作用。研究结果表明,能带电子与取代Cu的掺杂离子之间的sp-d交换相互作用是改变材料性能的关键。具体而言,这些相互作用通过移动导带和价带边缘以及增加载流子浓度来降低带隙。据观察,未掺杂的CuS纳米花的载流子寿命为2.16 ns,而锰掺杂的CuS的载流子寿命延长至2.62 ns。这种增加归因于更长的载流子散射时间(锰掺杂的CuS为84±5 fs,而CuS为53±14 fs)以及较慢的俘获(约1.5 ps)和延长的去俘获(约100 ps)速率。这些掺杂诱导的能级通过降低复合率来提高迁移率和载流子寿命。本研究突出了掺杂CuS作为钠离子电池阴极材料的潜力,并强调了金属硫化物在能源解决方案中的适用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验