Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China.
Elife. 2024 Sep 17;12:RP91046. doi: 10.7554/eLife.91046.
Ethylamine (EA), the precursor of theanine biosynthesis, is synthesized from alanine decarboxylation by alanine decarboxylase (AlaDC) in tea plants. AlaDC evolves from serine decarboxylase (SerDC) through neofunctionalization and has lower catalytic activity. However, lacking structure information hinders the understanding of the evolution of substrate specificity and catalytic activity. In this study, we solved the X-ray crystal structures of AlaDC from (CsAlaDC) and SerDC from (AtSerDC). Tyr of AtSerDC or the corresponding Tyr of CsAlaDC is essential for their enzymatic activity. Tyr of AtSerDC and the corresponding Phe of CsAlaDC determine their substrate specificity. Both CsAlaDC and AtSerDC have a distinctive zinc finger and have not been identified in any other Group II PLP-dependent amino acid decarboxylases. Based on the structural comparisons, we conducted a mutation screen of CsAlaDC. The results indicated that the mutation of L110F or P114A in the CsAlaDC dimerization interface significantly improved the catalytic activity by 110% and 59%, respectively. Combining a double mutant of CsAlaDC with theanine synthetase increased theanine production 672% in an system. This study provides the structural basis for the substrate selectivity and catalytic activity of CsAlaDC and AtSerDC and provides a route to more efficient biosynthesis of theanine.
乙胺(EA)是茶氨酸生物合成的前体,由茶氨酸中的丙氨酸脱羧酶(AlaDC)从丙氨酸脱羧生成。AlaDC 是由丝氨酸脱羧酶(SerDC)通过新功能化进化而来的,其催化活性较低。然而,由于缺乏结构信息,阻碍了对底物特异性和催化活性进化的理解。在这项研究中,我们解析了 (CsAlaDC)和 (AtSerDC)的 AlaDC 和 SerDC 的 X 射线晶体结构。AtSerDC 的 Tyr 或 CsAlaDC 相应的 Tyr 对其酶活性至关重要。AtSerDC 的 Tyr 和 CsAlaDC 相应的 Phe 决定了它们的底物特异性。CsAlaDC 和 AtSerDC 都具有独特的锌指结构,在任何其他 II 组 PLP 依赖性氨基酸脱羧酶中都没有发现。基于结构比较,我们对 CsAlaDC 进行了突变筛选。结果表明,CsAlaDC 二聚体界面上 L110F 或 P114A 的突变分别使催化活性提高了 110%和 59%。将 CsAlaDC 的双突变体与茶氨酸合酶结合,使茶氨酸在 系统中的产量增加了 672%。本研究为 CsAlaDC 和 AtSerDC 的底物选择性和催化活性提供了结构基础,并为更高效地合成茶氨酸提供了途径。