Suppr超能文献

OOD-CV-v2:自然图像中个体干扰因素的分布外偏移鲁棒性扩展基准。

OOD-CV-v2 : An Extended Benchmark for Robustness to Out-of-Distribution Shifts of Individual Nuisances in Natural Images.

作者信息

Zhao Bingchen, Wang Jiahao, Ma Wufei, Jesslen Artur, Yang Siwei, Yu Shaozuo, Zendel Oliver, Theobalt Christian, Yuille Alan L, Kortylewski Adam

出版信息

IEEE Trans Pattern Anal Mach Intell. 2024 Dec;46(12):11104-11118. doi: 10.1109/TPAMI.2024.3462293. Epub 2024 Nov 6.

Abstract

Enhancing the robustness of vision algorithms in real-world scenarios is challenging. One reason is that existing robustness benchmarks are limited, as they either rely on synthetic data or ignore the effects of individual nuisance factors. We introduce OOD-CV-v2, a benchmark dataset that includes out-of-distribution examples of 10 object categories in terms of pose, shape, texture, context and the weather conditions, and enables benchmarking of models for image classification, object detection, and 3D pose estimation. In addition to this novel dataset, we contribute extensive experiments using popular baseline methods, which reveal that: 1) Some nuisance factors have a much stronger negative effect on the performance compared to others, also depending on the vision task. 2) Current approaches to enhance robustness have only marginal effects, and can even reduce robustness. 3) We do not observe significant differences between convolutional and transformer architectures. We believe our dataset provides a rich test bed to study robustness and will help push forward research in this area.

摘要

增强视觉算法在现实场景中的鲁棒性具有挑战性。一个原因是现有的鲁棒性基准测试存在局限性,因为它们要么依赖合成数据,要么忽略了个别干扰因素的影响。我们引入了OOD-CV-v2,这是一个基准数据集,包含10个物体类别的分布外示例,涉及姿态、形状、纹理、背景和天气条件,并能够对图像分类、目标检测和3D姿态估计模型进行基准测试。除了这个新颖的数据集,我们还使用流行的基线方法进行了广泛的实验,结果表明:1)一些干扰因素对性能的负面影响比其他因素更强,这也取决于视觉任务。2)当前增强鲁棒性的方法只有边际效应,甚至可能降低鲁棒性。3)我们没有观察到卷积架构和Transformer架构之间的显著差异。我们相信我们的数据集为研究鲁棒性提供了一个丰富的测试平台,并将有助于推动该领域的研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验