Suppr超能文献

一种基于虚拟现实的模块化自动瞳孔计检测单侧视神经病变中相对性传入性瞳孔障碍的诊断准确性

Diagnostic accuracy of a modularized, virtual-reality-based automated pupillometer for detection of relative afferent pupillary defect in unilateral optic neuropathies.

作者信息

Negi Rahul, Kalivemula Manasa, Bisht Karan, Bhate Manjushree, Sachdeva Virender, Bharadwaj Shrikant R

机构信息

Brien Holden Institute of Optometry and Vision Sciences, L V Prasad Eye Institute, Hyderabad, Telangana, India.

Center for Technology Innovation, L V Prasad Eye Institute, Hyderabad, Telangana, India.

出版信息

Front Ophthalmol (Lausanne). 2024 Sep 3;4:1396511. doi: 10.3389/fopht.2024.1396511. eCollection 2024.

Abstract

PURPOSE

To describe the construction and diagnostic accuracy of a modularized, virtual reality (VR)-based, pupillometer for detecting relative afferent pupillary defect (RAPD) in unilateral optic neuropathies, vis-à-vis, clinical grading by experienced neuro-ophthalmologists.

METHODS

Protocols for the swinging flashlight test and pupillary light response analysis used in a previous stand-alone pupillometer was integrated into the hardware of a Pico Neo 2 Eye VR headset with built-in eye tracker. Each eye of 77 cases (mean ± 1SD age: 39.1 ± 14.9yrs) and 77 age-similar controls were stimulated independently thrice for 1sec at 125lux light intensity, followed by 3sec of darkness. RAPD was quantified as the ratio of the direct reflex of the stronger to the weaker eye. Device performance was evaluated using standard ROC analysis.

RESULTS

The median (25th - 75th quartiles) pupil constriction of the affected eye of cases was 38% (17 - 23%) smaller than their fellow eye (p<0.001), compared to an interocular difference of +/-6% (3 - 15%) in controls. The sensitivity of RAPD detection was 78.5% for the entire dataset and it improved to 85.1% when the physiological asymmetries in the bilateral pupillary miosis were accounted for. Specificity and the area under ROC curve remained between 81 - 96.3% across all analyses.

CONCLUSIONS

RAPD may be successfully quantified in unilateral neuro-ophthalmic pathology using a VR-technology-based modularized pupillometer. Such an objective estimation of RAPD provides immunity against biases and variability in the clinical grading, overall enhancing its value for clinical decision making.

摘要

目的

描述一种基于模块化虚拟现实(VR)的瞳孔计的构建及其诊断准确性,该瞳孔计用于检测单侧视神经病变中的相对传入性瞳孔障碍(RAPD),并与经验丰富的神经眼科医生的临床分级进行对比。

方法

将先前独立瞳孔计中使用的摆动手电筒测试和瞳孔光反应分析协议集成到内置眼动追踪器的Pico Neo 2 Eye VR头显硬件中。对77例患者(平均±1标准差年龄:39.1±14.9岁)的每只眼睛和77名年龄相仿的对照者的眼睛,在125勒克斯光照强度下独立刺激三次,每次1秒,随后黑暗3秒。RAPD被量化为较强眼与较弱眼直接反射的比率。使用标准ROC分析评估设备性能。

结果

病例患眼的瞳孔收缩中位数(第25 - 75四分位数)比健眼小38%(17 - 23%)(p<0.001),而对照组的眼间差异为±6%(3 - 15%)。整个数据集的RAPD检测灵敏度为78.5%,当考虑双侧瞳孔缩小的生理不对称性时,灵敏度提高到85.1%。在所有分析中,特异性和ROC曲线下面积保持在81 - 96.3%之间。

结论

使用基于VR技术的模块化瞳孔计可成功量化单侧神经眼科病变中的RAPD。这种对RAPD的客观评估可避免临床分级中的偏差和变异性,总体上提高其对临床决策的价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d25/11405164/a882329861af/fopht-04-1396511-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验