Suppr超能文献

通过 N4-羟基胞苷诱变鉴定抗体耐药的 SARS-CoV-2 突变体。

Identification of antibody-resistant SARS-CoV-2 mutants via N4-Hydroxycytidine mutagenesis.

机构信息

Department of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, 37077, Göttingen, Germany.

Department of Mathematics and Technology, University of Applied Sciences Koblenz, 53424, Remagen, Germany; Department of Informatics, Technical University of Munich, 81675, Munich, Germany.

出版信息

Antiviral Res. 2024 Nov;231:106006. doi: 10.1016/j.antiviral.2024.106006. Epub 2024 Sep 16.

Abstract

Monoclonal antibodies targeting the Spike protein of SARS-CoV-2 are effective against COVID-19 and might mitigate future pandemics. However, their efficacy is challenged by the emergence of antibody-resistant virus variants. We developed a method to efficiently identify such resistant mutants based on selection from mutagenized virus pools. By inducing mutations with the active compound of Molnupiravir, N4-hydroxycytidine (NHC), and subsequently passaging the virus in the presence of antibodies, we identified specific Spike mutations linked to resistance. Validation of these mutations was conducted using pseudotypes and immunofluorescence analysis. From a Wuhan-like strain of SARS-CoV-2, we identified the following mutations conferring strong resistance towards the corresponding antibodies: Bamlanivimab - E484K, F490S and S494P; Sotrovimab - E340K; Cilgavimab - K444R/E and N450D. From the Omicron B.1.1.529 variant, the strongly selected mutations were: Bebtelovimab - V445A; Sotrovimab - E340K and K356M; Cilgavimab - K444R, V445A and N450D. We also identified escape mutations in the Wuhan-like Spike for the broadly neutralizing antibodies S2K146 - combined G485S and Q493R - and S2H97 - D428G, K462E and S514F. Structural analysis revealed that the selected mutations occurred at antibody-binding residues within the receptor-binding domains of the Spike protein. Most of the selected mutants largely maintained ACE2 binding and infectivity. Notably, many of the identified resistance-conferring mutations are prevalent in real-world SARS-CoV-2 variants, but some of them (G485S, D428G, and K462E) have not yet been observed in circulating strains. Our approach offers a strategy for predicting the therapeutic efficacy of antibodies against emerging virus variants.

摘要

针对 SARS-CoV-2 刺突蛋白的单克隆抗体对 COVID-19 有效,并且可能减轻未来的大流行。然而,它们的疗效受到抗体耐药病毒变异体的挑战。我们开发了一种基于从诱变病毒库中选择的方法来有效地鉴定这种耐药突变体。通过用莫努匹韦的活性化合物 N4-羟基胞苷(NHC)诱导突变,然后在抗体存在的情况下传代病毒,我们鉴定出与耐药性相关的特定刺突突变。使用假型和免疫荧光分析验证了这些突变。从武汉样 SARS-CoV-2 株中,我们鉴定出以下突变赋予了对相应抗体的强耐药性:巴姆兰尼单抗 - E484K、F490S 和 S494P;索特罗维单抗 - E340K;西加维单抗 - K444R/E 和 N450D。从奥密克戎 B.1.1.529 变体中,强烈选择的突变是:贝特尔罗维单抗 - V445A;索特罗维单抗 - E340K 和 K356M;西加维单抗 - K444R、V445A 和 N450D。我们还鉴定出武汉样 Spike 中对广泛中和抗体 S2K146 - 结合 G485S 和 Q493R - 和 S2H97 - D428G、K462E 和 S514F 的逃逸突变。结构分析表明,选择的突变发生在 Spike 蛋白受体结合域内的抗体结合残基上。大多数选择的突变体在很大程度上保持了 ACE2 结合和感染性。值得注意的是,许多鉴定出的耐药性赋予突变在现实世界的 SARS-CoV-2 变体中很普遍,但其中一些(G485S、D428G 和 K462E)尚未在循环株中观察到。我们的方法为预测针对新出现的病毒变异体的抗体的治疗效果提供了一种策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验