Blake Christopher, Barber Jake N, Connallon Tim, McDonald Michael J
School of Biological Sciences, Monash University, Clayton, Victoria, Australia.
Nat Ecol Evol. 2024 Dec;8(12):2325-2335. doi: 10.1038/s41559-024-02543-0. Epub 2024 Sep 18.
Global ecosystems are rapidly approaching tipping points, where minute shifts can lead to drastic ecological changes. Theory predicts that evolution can shape a system's tipping point behaviour, but direct experimental support is lacking. Here we investigate the power of evolutionary processes to alter these critical thresholds and protect an ecological community from collapse. To do this, we propagate a two-species microbial system composed of Escherichia coli and baker's yeast, Saccharomyces cerevisiae, for over 4,000 generations, and map ecological stability before and after coevolution. Our results reveal that tipping points-and other geometric properties of ecological communities-can evolve to alter the range of conditions under which our microbial community can flourish. We develop a mathematical model to illustrate how evolutionary changes in parameters such as growth rate, carrying capacity and resistance to environmental change affect ecological resilience. Our study shows that adaptation of key species can shift an ecological community's tipping point, potentially promoting ecological stability or accelerating collapse.
全球生态系统正迅速逼近临界点,微小的变化都可能导致剧烈的生态变化。理论预测,进化可以塑造一个系统的临界点行为,但缺乏直接的实验支持。在这里,我们研究进化过程改变这些临界阈值并保护生态群落不崩溃的能力。为此,我们将由大肠杆菌和酿酒酵母组成的双物种微生物系统繁殖了4000多代,并绘制了共同进化前后的生态稳定性图谱。我们的结果表明,临界点以及生态群落的其他几何特性可以进化,从而改变我们的微生物群落能够繁荣的条件范围。我们开发了一个数学模型来说明诸如生长速率、承载能力和对环境变化的抵抗力等参数的进化变化如何影响生态恢复力。我们的研究表明,关键物种的适应可以改变生态群落的临界点,有可能促进生态稳定性或加速崩溃。