Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
Nat Genet. 2024 Oct;56(10):2213-2227. doi: 10.1038/s41588-024-01911-7. Epub 2024 Sep 18.
Transcription factor (TF) DNA-binding dynamics govern cell fate and identity. However, our ability to pharmacologically control TF localization is limited. Here we leverage chemically driven binding site restriction leading to robust and DNA-sequence-specific redistribution of PU.1, a pioneer TF pertinent to many hematopoietic malignancies. Through an innovative technique, 'CLICK-on-CUT&Tag', we characterize the hierarchy of de novo PU.1 motifs, predicting occupancy in the PU.1 cistrome under binding site restriction. Temporal and single-molecule studies of binding site restriction uncover the pioneering dynamics of native PU.1 and identify the paradoxical activation of an alternate target gene set driven by PU.1 localization to second-tier binding sites. These transcriptional changes were corroborated by genetic blockade and site-specific reporter assays. Binding site restriction and subsequent PU.1 network rewiring causes primary human leukemia cells to differentiate. In summary, pharmacologically induced TF redistribution can be harnessed to govern TF localization, actuate alternate gene networks and direct cell fate.
转录因子 (TF) 的 DNA 结合动力学决定了细胞的命运和身份。然而,我们能够在药理学上控制 TF 定位的能力是有限的。在这里,我们利用化学驱动的结合位点限制,导致 PU.1 的强大和 DNA 序列特异性重新分布,PU.1 是与许多血液恶性肿瘤相关的先驱 TF。通过一项创新技术“CLICK-on-CUT&Tag”,我们描述了从头开始的 PU.1 基序的层次结构,预测了在结合位点限制下 PU.1 顺式作用元件中的占有率。结合位点限制的时间和单分子研究揭示了天然 PU.1 的先驱动力学,并确定了由 PU.1 定位到第二级结合位点驱动的替代靶基因集的悖论激活。这些转录变化得到了遗传阻断和特异性报告基因检测的证实。结合位点限制和随后的 PU.1 网络重排导致原代人类白血病细胞分化。总之,药理学诱导的 TF 重分布可用于控制 TF 定位、激活替代基因网络和指导细胞命运。