Departamento de Física, Centro de Ciência Exatas e da Natureza, <a href="https://ror.org/047908t24">Universidade Federal de Pernambuco</a>, Recife PE 50670-901, Brazil.
Life and Health Sciences Research Institute (ICVS), School of Medicine, <a href="https://ror.org/037wpkx04">University of Minho</a>, 4710-057 Braga, Portugal.
Phys Rev E. 2024 Aug;110(2-1):024401. doi: 10.1103/PhysRevE.110.024401.
An important working hypothesis to investigate brain activity is whether it operates in a critical regime. Recently, maximum-entropy phenomenological models have emerged as an alternative way of identifying critical behavior in neuronal data sets. In the present paper, we investigate the signatures of criticality from a firing rate-based maximum-entropy approach on data sets generated by computational models, and we compare them to experimental results. We found that the maximum entropy approach consistently identifies critical behavior around the phase transition in models and rules out criticality in models without phase transition. The maximum-entropy-model results are compatible with results for cortical data from urethane-anesthetized rats data, providing further support for criticality in the brain.
研究大脑活动的一个重要工作假设是,大脑活动是否处于临界状态。最近,最大熵现象学模型作为一种识别神经元数据集临界行为的替代方法出现了。在本文中,我们从基于发放率的最大熵方法研究了来自计算模型生成的数据集中的临界性特征,并将其与实验结果进行了比较。我们发现,最大熵方法在模型的相变附近一致地识别出临界行为,并排除了没有相变的模型中的临界性。最大熵模型的结果与来自乌拉坦麻醉大鼠数据的皮质数据的结果是一致的,为大脑中的临界性提供了进一步的支持。