Geng Bo, Wang Haiyan, Shen Xiaohong, Zhang Hongwei, Yan Yongsheng
School of Marine Science and Technology, <a href="https://ror.org/01y0j0j86">Northwestern Polytechnical University</a>, Xi'an, Shaanxi 710072, China.
Key Laboratory of Ocean Acoustics and Sensing, <a href="https://ror.org/01y0j0j86">Northwestern Polytechnical University</a>, Ministry of Industry and Information Technology, Xi'an, Shaanxi 710072, China.
Phys Rev E. 2024 Aug;110(2-1):024205. doi: 10.1103/PhysRevE.110.024205.
Extracting meaningful information from signals has always been a challenge. Due to the influence of environmental noise, collected signals often exhibit nonlinear characteristics, rendering traditional metrics inadequate in capturing the dynamic properties and complex structures of signals. To address this challenge, this study proposes an innovative metric for quantifying signal complexity-dispersion network-transition entropy (DNTE), which integrates the concepts of complex networks and information entropy. Specifically, we assign single cumulative distribution function values to network nodes and utilize Markov chains to represent links, transforming nonlinear signals into weighted directed complex networks. Subsequently, we assess the importance of network nodes and links, and employ the mathematical expression of information entropy to calculate the DNTE value, quantifying the complexity of the original signal. Next, through extensive experiments on simulated chaotic models and real underwater acoustic signals, we confirm the outstanding performance of DNTE. The results indicate that, compared to Lempel-Ziv complexity, permutation entropy, and dispersion entropy, DNTE not only more accurately reflects changes in signal complexity but also exhibits higher computational efficiency. Importantly, DNTE demonstrates optimal performance in distinguishing different categories of chaotic models, ships, and modulation signals, showcasing its significant potential in extracting effective information from signals.
从信号中提取有意义的信息一直是一项挑战。由于环境噪声的影响,采集到的信号往往呈现出非线性特征,使得传统指标在捕捉信号的动态特性和复杂结构方面显得不足。为应对这一挑战,本研究提出了一种用于量化信号复杂度的创新指标——离散网络转移熵(DNTE),它整合了复杂网络和信息熵的概念。具体而言,我们为网络节点分配单个累积分布函数值,并利用马尔可夫链来表示链接,将非线性信号转化为加权有向复杂网络。随后,我们评估网络节点和链接的重要性,并运用信息熵的数学表达式来计算DNTE值,从而量化原始信号的复杂度。接下来,通过对模拟混沌模型和真实水下声学信号进行大量实验,我们证实了DNTE的卓越性能。结果表明,与莱姆尔-齐夫复杂度、排列熵和离散熵相比,DNTE不仅能更准确地反映信号复杂度的变化,还具有更高的计算效率。重要的是,DNTE在区分不同类别的混沌模型、船舶和调制信号方面表现出最佳性能,展示了其在从信号中提取有效信息方面的巨大潜力。
Sensors (Basel). 2019-11-27
Entropy (Basel). 2024-6-17
Entropy (Basel). 2023-6-29
Entropy (Basel). 2023-5-25
Entropy (Basel). 2018-3-20