文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

离散网络转移熵:一种用于表征非线性信号复杂性的度量。

Dispersion network-transition entropy: A metric for characterizing the complexity of nonlinear signals.

作者信息

Geng Bo, Wang Haiyan, Shen Xiaohong, Zhang Hongwei, Yan Yongsheng

机构信息

School of Marine Science and Technology, <a href="https://ror.org/01y0j0j86">Northwestern Polytechnical University</a>, Xi'an, Shaanxi 710072, China.

Key Laboratory of Ocean Acoustics and Sensing, <a href="https://ror.org/01y0j0j86">Northwestern Polytechnical University</a>, Ministry of Industry and Information Technology, Xi'an, Shaanxi 710072, China.

出版信息

Phys Rev E. 2024 Aug;110(2-1):024205. doi: 10.1103/PhysRevE.110.024205.


DOI:10.1103/PhysRevE.110.024205
PMID:39295027
Abstract

Extracting meaningful information from signals has always been a challenge. Due to the influence of environmental noise, collected signals often exhibit nonlinear characteristics, rendering traditional metrics inadequate in capturing the dynamic properties and complex structures of signals. To address this challenge, this study proposes an innovative metric for quantifying signal complexity-dispersion network-transition entropy (DNTE), which integrates the concepts of complex networks and information entropy. Specifically, we assign single cumulative distribution function values to network nodes and utilize Markov chains to represent links, transforming nonlinear signals into weighted directed complex networks. Subsequently, we assess the importance of network nodes and links, and employ the mathematical expression of information entropy to calculate the DNTE value, quantifying the complexity of the original signal. Next, through extensive experiments on simulated chaotic models and real underwater acoustic signals, we confirm the outstanding performance of DNTE. The results indicate that, compared to Lempel-Ziv complexity, permutation entropy, and dispersion entropy, DNTE not only more accurately reflects changes in signal complexity but also exhibits higher computational efficiency. Importantly, DNTE demonstrates optimal performance in distinguishing different categories of chaotic models, ships, and modulation signals, showcasing its significant potential in extracting effective information from signals.

摘要

从信号中提取有意义的信息一直是一项挑战。由于环境噪声的影响,采集到的信号往往呈现出非线性特征,使得传统指标在捕捉信号的动态特性和复杂结构方面显得不足。为应对这一挑战,本研究提出了一种用于量化信号复杂度的创新指标——离散网络转移熵(DNTE),它整合了复杂网络和信息熵的概念。具体而言,我们为网络节点分配单个累积分布函数值,并利用马尔可夫链来表示链接,将非线性信号转化为加权有向复杂网络。随后,我们评估网络节点和链接的重要性,并运用信息熵的数学表达式来计算DNTE值,从而量化原始信号的复杂度。接下来,通过对模拟混沌模型和真实水下声学信号进行大量实验,我们证实了DNTE的卓越性能。结果表明,与莱姆尔-齐夫复杂度、排列熵和离散熵相比,DNTE不仅能更准确地反映信号复杂度的变化,还具有更高的计算效率。重要的是,DNTE在区分不同类别的混沌模型、船舶和调制信号方面表现出最佳性能,展示了其在从信号中提取有效信息方面的巨大潜力。

相似文献

[1]
Dispersion network-transition entropy: A metric for characterizing the complexity of nonlinear signals.

Phys Rev E. 2024-8

[2]
Reverse Dispersion Entropy: A New Complexity Measure for Sensor Signal.

Sensors (Basel). 2019-11-27

[3]
Tsallis Entropy-Based Complexity-IPE Casualty Plane: A Novel Method for Complex Time Series Analysis.

Entropy (Basel). 2024-6-17

[4]
Variable-Step Multiscale Fuzzy Dispersion Entropy: A Novel Metric for Signal Analysis.

Entropy (Basel). 2023-6-29

[5]
Research on the Threshold Determination Method of the Duffing Chaotic System Based on Improved Permutation Entropy and Poincaré Mapping.

Entropy (Basel). 2023-12-13

[6]
Comparative Study on Feature Extraction of Marine Background Noise Based on Nonlinear Dynamic Features.

Entropy (Basel). 2023-5-25

[7]
Amplitude- and Fluctuation-Based Dispersion Entropy.

Entropy (Basel). 2018-3-20

[8]
Refined composite multiscale fluctuation-based dispersion Lempel-Ziv complexity for signal analysis.

ISA Trans. 2023-2

[9]
Dispersion complexity-entropy curves: An effective method to characterize the structures of nonlinear time series.

Chaos. 2024-3-1

[10]
Noise Reduction Method of Underwater Acoustic Signals Based on CEEMDAN, Effort-To-Compress Complexity, Refined Composite Multiscale Dispersion Entropy and Wavelet Threshold Denoising.

Entropy (Basel). 2018-12-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索