文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Molecular classification of geriatric breast cancer displays distinct senescent subgroups of prognostic significance.

作者信息

Wu Xia, Chen Mengxin, Liu Kang, Wu Yixin, Feng Yun, Fu Shiting, Xu Huaimeng, Zhao Yongqi, Lin Feilong, Lin Liang, Ye Shihui, Lin Junqiang, Xiao Taiping, Li Wenhao, Lou Meng, Lv Hongyu, Qiu Ye, Yu Ruifan, Chen Wenyan, Li Mengyuan, Feng Xu, Luo Zhongbing, Guo Lu, Ke Hao, Zhao Limin

机构信息

Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China.

Ningbo Clinical Pathology Diagnosis Center, Ningbo, Zhejiang 315021, China.

出版信息

Mol Ther Nucleic Acids. 2024 Aug 15;35(4):102309. doi: 10.1016/j.omtn.2024.102309. eCollection 2024 Dec 10.


DOI:10.1016/j.omtn.2024.102309
PMID:39296329
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11408383/
Abstract

Breast cancer in the elderly presents distinct biological characteristics and clinical treatment responses compared with cancer in younger patients. Comprehensive Geriatric Assessment is recommended for evaluating treatment efficacy in elderly cancer patients based on physiological classification. However, research on molecular classification in older cancer patients remains insufficient. In this study, we identified two subgroups with distinct senescent clusters among geriatric breast cancer patients through multi-omics analysis. Using various machine learning algorithms, we developed a comprehensive scoring model called "Sene_Signature," which more accurately distinguished elderly breast cancer patients compared with existing methods and better predicted their prognosis. The Sene_Signature was correlated with tumor immune cell infiltration, as supported by single-cell transcriptomics, RNA sequencing, and pathological data. Furthermore, we observed increased drug responsiveness in patients with a high Sene_Signature to treatments targeting the epidermal growth factor receptor and cell-cycle pathways. We also established a user-friendly web platform to assist investigators in assessing Sene_Signature scores and predicting treatment responses for elderly breast cancer patients. In conclusion, we developed a novel model for evaluating prognosis and therapeutic responses, providing a potential molecular classification that assists in the pre-treatment assessment of geriatric breast cancer.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5f3/11408383/067f875c8ce5/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5f3/11408383/ae000ae0e6a5/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5f3/11408383/dbc3eeb5ac47/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5f3/11408383/925e6de99d30/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5f3/11408383/81241db7912a/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5f3/11408383/3d77d60ff7fb/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5f3/11408383/5ae4ce382701/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5f3/11408383/3389ee94c836/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5f3/11408383/067f875c8ce5/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5f3/11408383/ae000ae0e6a5/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5f3/11408383/dbc3eeb5ac47/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5f3/11408383/925e6de99d30/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5f3/11408383/81241db7912a/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5f3/11408383/3d77d60ff7fb/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5f3/11408383/5ae4ce382701/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5f3/11408383/3389ee94c836/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5f3/11408383/067f875c8ce5/gr7.jpg

相似文献

[1]
Molecular classification of geriatric breast cancer displays distinct senescent subgroups of prognostic significance.

Mol Ther Nucleic Acids. 2024-8-15

[2]
Multi-omics identification of an immunogenic cell death-related signature for clear cell renal cell carcinoma in the context of 3P medicine and based on a 101-combination machine learning computational framework.

EPMA J. 2023-5-31

[3]
Integration of Bioinformatics and Machine Learning to Identify CD8+ T Cell-Related Prognostic Signature to Predict Clinical Outcomes and Treatment Response in Breast Cancer Patients.

Genes (Basel). 2024-8-19

[4]
Integrative multi-omics analyses unravel the immunological implication and prognostic significance of CXCL12 in breast cancer.

Front Immunol. 2023

[5]
Comprehensive Characterization of RNA Processing Factors in Gastric Cancer Identifies a Prognostic Signature for Predicting Clinical Outcomes and Therapeutic Responses.

Front Immunol. 2021

[6]
A Cuproptosis-Related LncRNA Risk Model for Predicting Prognosis and Immunotherapeutic Efficacy in Patients with Hepatocellular Carcinoma.

Biochem Genet. 2024-6

[7]
A comprehensive multi-omics analysis identifies a robust scoring system for cancer-associated fibroblasts and intervention targets in colorectal cancer.

J Cancer Res Clin Oncol. 2024-3-13

[8]
Development of a machine learning-based radiomics signature for estimating breast cancer TME phenotypes and predicting anti-PD-1/PD-L1 immunotherapy response.

Breast Cancer Res. 2024-1-29

[9]
Construction of a Matrix Cancer-Associated Fibroblast Signature Gene-Based Risk Prognostic Signature for Directing Immunotherapy in Patients with Breast Cancer Using Single-Cell Analysis and Machine Learning.

Int J Mol Sci. 2023-8-24

[10]
Multi-omics identification of GPCR gene features in lung adenocarcinoma based on multiple machine learning combinations.

J Cancer. 2024-1-1

引用本文的文献

[1]
Machine learning and single-cell analysis uncover distinctive characteristics of CD300LG within the TNBC immune microenvironment: experimental validation.

Clin Exp Med. 2025-5-17

本文引用的文献

[1]
Novel 2 Gene Signatures Associated With Breast Cancer Proliferation: Insights From Predictive Differential Gene Expression Analysis.

Mod Pathol. 2024-2

[2]
Identification and validation of aging-related gene signatures and their immune landscape in diabetic nephropathy.

Front Med (Lausanne). 2023-6-19

[3]
Metabolite-assisted models improve risk prediction of coronary heart disease in patients with diabetes.

Front Pharmacol. 2023-3-24

[4]
Collaborative study from the Bladder Cancer Advocacy Network for the genomic analysis of metastatic urothelial cancer.

Nat Commun. 2022-11-4

[5]
Breast Cancer in Geriatric Patients: Current Landscape and Future Prospects.

Clin Interv Aging. 2022

[6]
Is cancer biology different in older patients?

Lancet Healthy Longev. 2021-10

[7]
Proteogenomic characterization of 2002 human cancers reveals pan-cancer molecular subtypes and associated pathways.

Nat Commun. 2022-5-13

[8]
NCCN Guidelines® Insights: Older Adult Oncology, Version 1.2021.

J Natl Compr Canc Netw. 2021-9-20

[9]
Identification of a Novel Inflamed Tumor Microenvironment Signature as a Predictive Biomarker of Bacillus Calmette-Guérin Immunotherapy in Non-Muscle-Invasive Bladder Cancer.

Clin Cancer Res. 2021-8-15

[10]
Updated recommendations regarding the management of older patients with breast cancer: a joint paper from the European Society of Breast Cancer Specialists (EUSOMA) and the International Society of Geriatric Oncology (SIOG).

Lancet Oncol. 2021-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索