Suppr超能文献

非昔硝唑优化:增强抗利什曼原虫活性、代谢稳定性及人醚 - 去极化激活的钾离子通道安全性

Fexinidazole optimization: enhancing anti-leishmanial profile, metabolic stability and hERG safety.

作者信息

Surur Abdrrahman Shemsu, Chan Chin Fung, Bartz Frieda-Marie, Wong Iris L K, Nguyen Van T D, Schulig Lukas, Link Andreas, Chan Tak Hang, Chow Larry M C, Bednarski Patrick J

机构信息

Department of Medicinal and Pharmaceutical Chemistry, Institute of Pharmacy, University of Greifswald Greifswald 17489 Germany.

CDT-Africa, Addis Ababa University Addis Ababa Ethiopia

出版信息

RSC Med Chem. 2024 Aug 30;15(11):3837-52. doi: 10.1039/d4md00426d.

Abstract

The lack of adequate anti-leishmanial therapies has led to the continued suffering of millions of people from developing nations. Moreover, optimism for a therapeutic intervention by fexinidazole was dashed due to the inability to maintain cures and control unwanted side effects. To solve these shortcomings, the structural elements of fexinidazole responsible for anti-leishmanial activity and toxicities were explored. Accordingly, a systematic analog design approach was taken for the synthesis of 24 novel analogs. We established the structural features important for activity and identified modifications that improved the hERG receptor safety and liver microsomal metabolic stability. Compared to fexinidazole, the -configured imidazolooxazole analog 51 exhibited 25-fold greater potency against miltefosine resistant amastigotes, greater metabolic stability and little hERG receptor inhibition. Replacement of the toxicophore nitro group for a cyano group resulted in a complete loss of anti-leishmanial activity. The SAR findings should be useful in the further development of this important class of anti-leishmanial agents.

摘要

缺乏足够的抗利什曼原虫疗法导致数百万发展中国家的人们持续遭受痛苦。此外,由于无法维持治愈效果并控制不良副作用,对非昔硝唑进行治疗干预的乐观期望破灭。为了解决这些缺点,对非昔硝唑中负责抗利什曼原虫活性和毒性的结构元素进行了探索。因此,采用了系统的类似物设计方法来合成24种新型类似物。我们确定了对活性重要的结构特征,并确定了能够改善人醚 - 去极化相关基因(hERG)受体安全性和肝微粒体代谢稳定性的修饰。与非昔硝唑相比,构型为的咪唑并恶唑类似物51对米替福新耐药的无鞭毛体的效力高25倍,具有更高的代谢稳定性且对hERG受体的抑制作用小。将毒性基团硝基替换为氰基导致抗利什曼原虫活性完全丧失。这些构效关系研究结果应有助于这一重要类别的抗利什曼原虫药物的进一步开发。

相似文献

1
Fexinidazole optimization: enhancing anti-leishmanial profile, metabolic stability and hERG safety.
RSC Med Chem. 2024 Aug 30;15(11):3837-52. doi: 10.1039/d4md00426d.
2
The anti-trypanosome drug fexinidazole shows potential for treating visceral leishmaniasis.
Sci Transl Med. 2012 Feb 1;4(119):119re1. doi: 10.1126/scitranslmed.3003326.
3
Miltefosine promotes IFN-gamma-dominated anti-leishmanial immune response.
J Immunol. 2009 Jun 1;182(11):7146-54. doi: 10.4049/jimmunol.0803859.
4
Evaluation of synergy between host and pathogen-directed therapies against intracellular Leishmania donovani.
Int J Parasitol Drugs Drug Resist. 2019 Aug;10:125-132. doi: 10.1016/j.ijpddr.2019.08.004. Epub 2019 Aug 21.
5
Design, synthesis and biological evaluation of piperazinyl-β-carbolinederivatives as anti-leishmanial agents.
Eur J Med Chem. 2018 Apr 25;150:559-566. doi: 10.1016/j.ejmech.2018.03.022. Epub 2018 Mar 8.
6
Assessing the essentiality of Leishmania donovani nitroreductase and its role in nitro drug activation.
Antimicrob Agents Chemother. 2013 Feb;57(2):901-6. doi: 10.1128/AAC.01788-12. Epub 2012 Dec 3.
8
Design, synthesis and evaluation of amino-substituted 1H-phenalen-1-ones as anti-leishmanial agents.
Eur J Med Chem. 2018 Jan 1;143:1312-1324. doi: 10.1016/j.ejmech.2017.10.032. Epub 2017 Oct 14.

引用本文的文献

1
Crystallographic and Electroanalytical Analyses of Fexinidazole and Its Major Metabolites.
ACS Omega. 2025 Aug 13;10(33):37985-37993. doi: 10.1021/acsomega.5c05115. eCollection 2025 Aug 26.

本文引用的文献

1
Leishmaniasis in Cameroon and neighboring countries: An overview of current status and control challenges.
Curr Res Parasitol Vector Borne Dis. 2022 Jan 22;2:100077. doi: 10.1016/j.crpvbd.2022.100077. eCollection 2022.
5
Promastigote-to-Amastigote Conversion in spp.-A Molecular View.
Pathogens. 2022 Sep 15;11(9):1052. doi: 10.3390/pathogens11091052.
7
Delamanid or pretomanid? A Solomonic judgement!
J Antimicrob Chemother. 2022 Mar 31;77(4):880-902. doi: 10.1093/jac/dkab505.
8
Role of CYP2A6 in Methimazole Bioactivation and Hepatotoxicity.
Chem Res Toxicol. 2021 Dec 20;34(12):2534-2539. doi: 10.1021/acs.chemrestox.1c00300. Epub 2021 Nov 17.
9
Hepatotoxicity of metronidazole in Cockayne syndrome: A clinical report.
Eur J Med Genet. 2022 Jan;65(1):104388. doi: 10.1016/j.ejmg.2021.104388. Epub 2021 Nov 9.
10
DNDI-6148: A Novel Benzoxaborole Preclinical Candidate for the Treatment of Visceral Leishmaniasis.
J Med Chem. 2021 Nov 11;64(21):16159-16176. doi: 10.1021/acs.jmedchem.1c01437. Epub 2021 Oct 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验