Analytical Mechanics Associates Inc., 21 Enterprise Parkway, Hampton, VA 23666, United States.
NASA Ames Research Center, MS:288/2, Mountain View, CA 94035, United States.
Integr Biol (Camb). 2024 Jan 23;16. doi: 10.1093/intbio/zyae015.
Cosmic radiation, composed of high charge and energy (HZE) particles, causes cellular DNA damage that can result in cell death or mutation that can evolve into cancer. In this work, a cell death model is applied to several cell lines exposed to HZE ions spanning a broad range of linear energy transfer (LET) values. We hypothesize that chromatin movement leads to the clustering of multiple double strand breaks (DSB) within one radiation-induced foci (RIF). The survival probability of a cell population is determined by averaging the survival probabilities of individual cells, which is function of the number of pairwise DSB interactions within RIF. The simulation code RITCARD was used to compute DSB. Two clustering approaches were applied to determine the number of RIF per cell. RITCARD outputs were combined with experimental data from four normal human cell lines to derive the model parameters and expand its predictions in response to ions with LET ranging from ~0.2 keV/μm to ~3000 keV/μm. Spherical and ellipsoidal nuclear shapes and two ion beam orientations were modeled to assess the impact of geometrical properties on cell death. The calculated average number of RIF per cell reproduces the saturation trend for high doses and high-LET values that is usually experimentally observed. The cell survival model generates the recognizable bell shape of LET dependence for the relative biological effectiveness (RBE). At low LET, smaller nuclei have lower survival due to increased DNA density and DSB clustering. At high LET, nuclei with a smaller irradiation area-either because of a smaller size or a change in beam orientation-have a higher survival rate due to a change in the distribution of DSB/RIF per cell. If confirmed experimentally, the geometric characteristics of cells would become a significant factor in predicting radiation-induced biological effects. Insight Box: High-charge and energy (HZE) ions are characterized by dense linear energy transfer (LET) that induce unique spatial distributions of DNA damage in cell nuclei that result in a greater biological effect than sparsely ionizing radiation like X-rays. HZE ions are a prominent component of galactic cosmic ray exposure during human spaceflight and specific ions are being used for radiotherapy. Here, we model DNA damage clustering at sub-micrometer scale to predict cell survival. The model is in good agreement with experimental data for a broad range of LET. Notably, the model indicates that nuclear geometry and ion beam orientation affect DNA damage clustering, which reveals their possible role in mediating cell radiosensitivity.
宇宙辐射由高电荷和高能量(HZE)粒子组成,会导致细胞 DNA 损伤,从而导致细胞死亡或突变,进而发展为癌症。在这项工作中,我们将细胞死亡模型应用于暴露于具有广泛线性能量转移(LET)值的 HZE 离子的几种细胞系。我们假设染色质运动导致在一个辐射诱导焦点(RIF)内多个双链断裂(DSB)的聚类。细胞群体的存活率由个体细胞存活率的平均值决定,而个体细胞存活率则取决于 RIF 内的两两 DSB 相互作用的数量。RITCARD 模拟代码用于计算 DSB。应用了两种聚类方法来确定每个细胞的 RIF 数量。将 RITCARD 的输出与来自四个正常人细胞系的实验数据相结合,推导出模型参数,并根据 LET 范围从 0.2 keV/μm 到 3000 keV/μm 的离子对其进行扩展。模拟了球形和椭圆形核形状以及两种离子束方向,以评估几何形状对细胞死亡的影响。计算出的每个细胞的平均 RIF 数量再现了通常在实验中观察到的高剂量和高 LET 值的饱和趋势。细胞存活模型产生了相对生物效应(RBE)的可识别 LET 依赖性钟形曲线。在低 LET 下,由于 DNA 密度增加和 DSB 聚类,较小的核具有较低的存活率。在高 LET 下,由于每个细胞的 DSB/RIF 分布发生变化,具有较小照射面积的核(无论是由于尺寸较小还是束方向改变)具有更高的存活率。如果实验证实,细胞的几何特征将成为预测辐射诱导的生物学效应的重要因素。亮点:高电荷和高能量(HZE)离子的特征是密集的线性能量转移(LET),这会导致细胞核内 DNA 损伤的独特空间分布,从而产生比 X 射线等稀疏电离辐射更大的生物学效应。HZE 离子是人类太空飞行期间银河宇宙射线照射的主要组成部分,并且正在使用特定的离子进行放射治疗。在这里,我们对亚微米尺度的 DNA 损伤聚类进行建模,以预测细胞存活。该模型与广泛 LET 范围内的实验数据吻合良好。值得注意的是,该模型表明核几何形状和离子束方向会影响 DNA 损伤聚类,这揭示了它们在调节细胞放射敏感性方面的可能作用。