Kondo Shun, Kameyama Mana, Imaoka Kentaro, Shimoi Yoko, Mathevet Fabrice, Fujihara Takashi, Goto Hiroshi, Nakanotani Hajime, Yahiro Masayuki, Adachi Chihaya
Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Fukuoka, Japan.
Institute of Systems, Information Technologies and Nanotechnologies (ISIT), Materials Open Laboratory (MOL), 4-1 Kyudai-Shinmachi, Fukuoka, Japan.
Nat Commun. 2024 Sep 19;15(1):8115. doi: 10.1038/s41467-024-52047-5.
We propose an organic thermoelectric device having a new power generation mechanism that extracts small-scale thermal energy, i.e., a few tens of millielectronvolts, at room temperature without a temperature gradient. We demonstrate a new operating mechanism based on an organic thermoelectric power generation architecture that uses the charge separation capabilities of organic charge transfer (CT) interfaces composed of copper (II) phthalocyanine and copper (II) 1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25-hexadecafluoro-29H,31H-phthalocyanine as the donor and acceptor, respectively. With the optimized device architecture, values of open-circuit voltage V of 384 mV, short-circuit current density J of 1.1 μA/cm, and maximum output P of 94 nW/cm are obtained. The temperature characteristics of the thermoelectric properties yield activation energy values of approximately 20-60 meV, confirming the low-level thermal energy's contribution to the power generation mechanism. Furthermore, from surface potential analysis using a Kelvin probe, we confirm that charges are generated at the CT interface, and the electrons and holes are diffused to the counter-electrodes with the aid of Fermi-level alignment between adjacent layers.
我们提出了一种具有新型发电机制的有机热电器件,该机制可在室温下无温度梯度的情况下提取小规模热能,即几十毫电子伏特的热能。我们展示了一种基于有机热电发电架构的新型运行机制,该架构利用由铜(II)酞菁和铜(II)1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25-十六氟-29H,31H-酞菁分别作为供体和受体组成的有机电荷转移(CT)界面的电荷分离能力。通过优化的器件架构,获得了开路电压V为384 mV、短路电流密度J为1.1 μA/cm以及最大输出功率P为94 nW/cm的值。热电性能的温度特性产生了约20 - 60 meV的活化能值,证实了低水平热能对发电机制的贡献。此外,通过使用开尔文探针进行表面电位分析,我们证实电荷在CT界面处产生,并且电子和空穴借助相邻层之间的费米能级对齐扩散到对电极。