van der Stelt Merel, Berends Bo, Papenburg Marco, Langenhuyzen Tom, Maal Thomas, Brouwers Lars, de Jong Guido, Leijendekkers Ruud
3D Lab Radboudumc, Radboud University Medical Center, Nijmegen, The Netherlands.
3D Lab Radboudumc, Radboud University Medical Center, Nijmegen, The Netherlands.
Arch Phys Med Rehabil. 2025 Feb;106(2):239-246. doi: 10.1016/j.apmr.2024.08.026. Epub 2024 Sep 19.
To investigate the feasibility of creating an artificial intelligence (AI) algorithm to enhance prosthetic socket shapes for transtibial prostheses, aiming for a less operator-dependent, standardized approach.
The study comprised 2 phases: first, developing an AI algorithm in a cross-sectional study to predict prosthetic socket shapes. Second, testing the AI-predicted digitally measured and standardized designed (DMSD) prosthetic socket against a manually measured and designed (MMD) prosthetic socket in a 2-week within-subject cross-sectional study.
The study was done at the rehabilitation department of the Radboud University Medical Center in Nijmegen, the Netherlands.
The AI algorithm was developed using retrospective data from 116 patients from a Dutch orthopedic company, OIM Orthopedie, and tested on 10 randomly selected participants from Papenburg Orthopedie.
Utilization of an AI algorithm to enhance the shape of a transtibial prosthetic socket.
The algorithm was optimized to minimize the error in the test set. Participants' socket comfort score and fitting ratings from an independent physiotherapist and prosthetist were collected.
Predicted prosthetic shapes deviated by 2.51 mm from the actual designs. In total, 8 of 10 DMSD and all 10 MMD-prosthetic sockets were satisfactory for home testing. Participants rated DMSD-prosthetic sockets at 7.1 ± 2.2 (n=8) and MMD-prosthetic sockets at 6.6 ± 1.2 (n=10) on average.
The study demonstrates promising results for using an AI algorithm in prosthetic socket design, but long-term effectiveness and refinement for improved comfort and fit in more deviant cases are necessary.
研究创建一种人工智能(AI)算法以优化经胫骨假肢接受腔形状的可行性,旨在实现一种较少依赖操作人员的标准化方法。
该研究包括两个阶段:第一,在横断面研究中开发一种AI算法以预测假肢接受腔形状。第二,在一项为期两周的受试者内横断面研究中,将AI预测的数字测量和标准化设计(DMSD)假肢接受腔与手动测量和设计(MMD)的假肢接受腔进行测试对比。
该研究在荷兰奈梅亨拉德堡德大学医学中心康复科进行。
AI算法是利用荷兰一家骨科公司OIM Orthopedie的116例患者的回顾性数据开发的,并在来自帕彭堡矫形外科的10名随机选择的参与者身上进行了测试。
利用AI算法优化经胫骨假肢接受腔的形状。
对算法进行优化以最小化测试集中的误差。收集了参与者的接受腔舒适度评分以及独立物理治疗师和假肢矫形师的适配评级。
预测的假肢形状与实际设计相差2.51毫米。在10个DMSD假肢接受腔中,共有8个以及所有10个MMD假肢接受腔在家用测试中令人满意。参与者对DMSD假肢接受腔的平均评分为7.1±2.2(n = 8),对MMD假肢接受腔的平均评分为6.6±1.2(n = 10)。
该研究表明在假肢接受腔设计中使用AI算法有良好前景,但在更复杂的病例中,为提高舒适度和适配度,还需要长期有效性和改进。