State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 92 Weijin Road, Tianjin 300072, China.
State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 92 Weijin Road, Tianjin 300072, China; International Institute for Innovative Design and Intelligent Manufacturing of Tianjin University in Zhejiang, Shaoxing 312000, China.
Ultrasonics. 2025 Jan;145:107465. doi: 10.1016/j.ultras.2024.107465. Epub 2024 Sep 12.
Within medical imaging, ultrasound serves as a crucial tool, particularly in the realms of brain imaging and disease diagnosis. It offers superior safety, speed, and wider applicability compared to Magnetic Resonance Imaging (MRI) and X-ray Computed Tomography (CT). Nonetheless, conventional transcranial ultrasound applications in adult brain imaging face challenges stemming from the significant acoustic impedance contrast between the skull bone and soft tissues. Recent strides in ultrasound technology encompass a spectrum of advancements spanning tissue structural imaging, blood flow imaging, functional imaging, and image enhancement techniques. Structural imaging methods include traditional transcranial ultrasound techniques and ultrasound elastography. Transcranial ultrasound assesses the structure and function of the skull and brain, while ultrasound elastography evaluates the elasticity of brain tissue. Blood flow imaging includes traditional transcranial Doppler (TCD), ultrafast Doppler (UfD), contrast-enhanced ultrasound (CEUS), and ultrasound localization microscopy (ULM), which can be used to evaluate the velocity, direction, and perfusion of cerebral blood flow. Functional ultrasound imaging (fUS) detects changes in cerebral blood flow to create images of brain activity. Image enhancement techniques include full waveform inversion (FWI) and phase aberration correction techniques, focusing on more accurate localization and analysis of brain structures, achieving more precise and reliable brain imaging results. These methods have been extensively studied in clinical animal models, neonates, and adults, showing significant potential in brain tissue structural imaging, cerebral hemodynamics monitoring, and brain disease diagnosis. They represent current hotspots and focal points of ultrasound medical research. This review provides a comprehensive summary of recent developments in brain imaging technologies and methods, discussing their advantages, limitations, and future trends, offering insights into their prospects.
在医学成像领域,超声是一种至关重要的工具,尤其在脑成像和疾病诊断方面。与磁共振成像(MRI)和 X 射线计算机断层扫描(CT)相比,超声具有更高的安全性、速度和更广泛的适用性。然而,传统的经颅超声在成人脑成像中的应用面临着一些挑战,这些挑战源于颅骨和软组织之间存在显著的声阻抗差异。最近,超声技术取得了一系列进展,涵盖了组织结构成像、血流成像、功能成像和图像增强技术等多个方面。结构成像方法包括传统的经颅超声技术和超声弹性成像。经颅超声评估颅骨和大脑的结构和功能,而超声弹性成像评估脑组织的弹性。血流成像包括传统的经颅多普勒(TCD)、超快多普勒(UfD)、对比增强超声(CEUS)和超声定位显微镜(ULM),可用于评估脑血流的速度、方向和灌注。功能超声成像(fUS)检测脑血流的变化,以创建大脑活动的图像。图像增强技术包括全波形反演(FWI)和相位误差校正技术,专注于更准确地定位和分析大脑结构,实现更精确和可靠的脑成像结果。这些方法已在临床动物模型、新生儿和成人中进行了广泛研究,在脑组织结构成像、脑血流动力学监测和脑疾病诊断方面具有显著的应用潜力。它们代表了当前超声医学研究的热点和焦点。本文全面综述了脑成像技术和方法的最新进展,讨论了它们的优缺点和未来趋势,为其应用前景提供了深入的了解。