Suppr超能文献

基于深度学习的早期蕈样肉芽肿和良性炎症性皮肤病在苏木精-伊红染色全切片图像上的分类:一项回顾性概念验证研究

Deep Learning-Based Classification of Early-Stage Mycosis Fungoides and Benign Inflammatory Dermatoses on H&E-Stained Whole-Slide Images: A Retrospective, Proof-of-Concept Study.

作者信息

Doeleman Thom, Brussee Siemen, Hondelink Liesbeth M, Westerbeek Daniëlle W F, Sequeira Ana M, Valkema Pieter A, Jansen Patty M, He Junling, Vermeer Maarten H, Quint Koen D, van Dijk Marijke R, Verbeek Fons J, Kers Jesper, Schrader Anne M R

机构信息

Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands; Division of Laboratories, Pharmacy and Biomedical Genetics, Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands.

Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands.

出版信息

J Invest Dermatol. 2025 May;145(5):1127-1134.e8. doi: 10.1016/j.jid.2024.07.036. Epub 2024 Sep 19.

Abstract

The diagnosis of early-stage mycosis fungoides (MF) is challenging owing to shared clinical and histopathological features with benign inflammatory dermatoses. Recent evidence has shown that deep learning (DL) can assist pathologists in cancer classification, but this field is largely unexplored for cutaneous lymphomas. This study evaluates DL in distinguishing early-stage MF from benign inflammatory dermatoses using a unique dataset of 924 H&E-stained whole-slide images from skin biopsies, including 233 patients with early-stage MF and 353 patients with benign inflammatory dermatoses. All patients with MF were diagnosed after clinicopathological correlation. The classification accuracy of weakly supervised DL models was benchmarked against 3 expert pathologists. The highest performance on a temporal test set was at ×200 magnification (0.50 μm per pixel resolution), with a mean area under the curve of 0.827 ± 0.044 and a mean balanced accuracy of 76.2 ± 3.9%. This nearly matched the 77.7% mean balanced accuracy of the 3 expert pathologists. Most (63.5%) attention heatmaps corresponded well with the pathologists' region of interest. Considering the difficulty of the MF versus benign inflammatory dermatoses classification task, the results of this study show promise for future applications of weakly supervised DL in diagnosing early-stage MF. Achieving clinical-grade performance will require larger multi-institutional datasets and improved methodologies, such as multimodal DL with incorporation of clinical data.

摘要

早期蕈样霉菌病(MF)的诊断具有挑战性,因为其临床和组织病理学特征与良性炎症性皮肤病有相似之处。最近的证据表明,深度学习(DL)可以帮助病理学家进行癌症分类,但在皮肤淋巴瘤领域,这方面的研究还很匮乏。本研究使用一个独特的数据集评估DL在区分早期MF与良性炎症性皮肤病方面的能力,该数据集包含924张来自皮肤活检的苏木精-伊红(H&E)染色全切片图像,其中包括233例早期MF患者和353例良性炎症性皮肤病患者。所有MF患者均经临床病理相关诊断。将弱监督DL模型的分类准确率与3名专家病理学家的结果进行对比。在临时测试集上,×200放大倍数(每像素分辨率0.50μm)时性能最佳,曲线下平均面积为0.827±0.044,平均平衡准确率为76.2±3.9%。这与3名专家病理学家77.7%的平均平衡准确率相近。大多数(63.5%)注意力热图与病理学家的感兴趣区域吻合良好。考虑到MF与良性炎症性皮肤病分类任务的难度,本研究结果为弱监督DL在早期MF诊断中的未来应用带来了希望。要实现临床级别的性能,需要更大的多机构数据集和改进的方法,如结合临床数据的多模态DL。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验