Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, 211189, China.
Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, 211189, China.
Chemosphere. 2024 Oct;365:143384. doi: 10.1016/j.chemosphere.2024.143384. Epub 2024 Sep 20.
The first investigation based on constructed wetlands coupled with modified basalt fiber bio-nest (MBF-CWs) was performed under exposure of short- and long-chain perfluorocarboxylic acids (PFCAs). In general, both perfluorooctanoic acid (PFOA) and perfluorobutanoic acid (PFBA) caused significant decline of chemical oxygen demand removal by 10.83 % and 4.73 %. However, only PFOA led to marked inhibition on total phosphorus removal by 12.51 % in whole duration. Suppression of removal performance resulted from side impacts on microbes by PFOA. For instance, activities of key enzymes like dehydrogenase (DHA), urease (URE), and phosphatase (PST) decreased by 52.77 %, 40.70 %, and 56.94 % in maximum under PFOA stress, while URE could alleviate over time. By contrast, distinct inhibition was only found on PST in later phases with PFBA exposure. PFCAs had adverse influence on alpha diversity of MBF-CWs, particularly long-chain PFOA. Both PFCAs caused enrichment of Proteobacteria, owing to increase of Gammaproteobacteria and Plasticicumulans by 22.04-35.79 % and 22.91-219.77 %. Nevertheless, some dominant phyla (like Bacteroidota and Acidobacteriota) and genera (like SC-I-84, Thauera, Subgroup_10, and Ellin6067) were only suppressed by PFOA, causing more hazards to microbial decontamination than PFBA did. As for plants, chlorophyll contents tend to decrease with PFOA treatment. Whereas, higher antioxidase activities and more lipid peroxidation products were uncovered in PFOA group, demonstrating more reactive oxygen species brought by long-chain PFCAs. This work offered new findings about ecological effects of MBF-CWs under PFCAs exposure, evaluating stability and sustainability of MBF-CW systems to treat sewage containing complex PFCAs.
该研究首次在短链和长链全氟羧酸(PFCAs)暴露条件下,基于构建湿地与改性玄武岩纤维生物巢(MBF-CWs)的组合系统开展研究。结果表明,全氟辛酸(PFOA)和全氟丁烷酸(PFBA)均会导致化学需氧量(COD)去除率显著下降,降幅分别为 10.83%和 4.73%。然而,仅 PFOA 会在整个实验过程中对总磷(TP)去除造成显著抑制,降幅达 12.51%。PFOA 通过对微生物产生的副效应导致去除性能下降。例如,在 PFOA 胁迫下,脱氢酶(DHA)、脲酶(URE)和磷酸酶(PST)等关键酶的活性最大分别下降 52.77%、40.70%和 56.94%,而 URE 可随时间推移而缓解。相反,仅在 PFBA 暴露的后期阶段才发现对 PST 有明显的抑制作用。PFCAs 对 MBF-CWs 的 α 多样性有不良影响,特别是长链 PFOA。两种 PFCAs 均会导致变形菌门(Proteobacteria)富集,其中 γ-变形菌纲(Gammaproteobacteria)和塑料杆菌属(Plasticicumulans)的相对丰度分别增加了 22.04-35.79%和 22.91-219.77%。然而,一些优势菌群(如浮霉菌门(Bacteroidota)和酸杆菌门(Acidobacteriota))和属(如 SC-I-84、陶厄氏菌属(Thauera)、Subgroup_10 和 Ellin6067)仅受 PFOA 抑制,对微生物去污造成的危害比 PFBA 更大。对于植物而言,叶绿素含量随 PFOA 处理而降低。然而,在 PFOA 组中发现了更高的抗氧化酶活性和更多的脂质过氧化产物,表明长链 PFCAs 带来了更多的活性氧。该研究为 MBF-CWs 在 PFCAs 暴露下的生态效应提供了新的发现,评估了 MBF-CW 系统处理含有复杂 PFCAs 的污水的稳定性和可持续性。