Department of Computing and Mathematics, Manchester Metropolitan University, Manchester, United Kingdom; School of Technology, Woxsen University, Hyderabad, India; Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India.
Department of Psychology, Christ University, Bangalore 560029, India.
Exp Gerontol. 2024 Nov;197:112585. doi: 10.1016/j.exger.2024.112585. Epub 2024 Oct 16.
Parkinson's disease (PD) is a prevalent neurological disorder characterized by progressive dopaminergic neuron loss, leading to both motor and non-motor symptoms. Early and accurate diagnosis is challenging due to the subtle and variable nature of early symptoms. This study aims to address these diagnostic challenges by proposing a novel method, Localized Region Extraction and Multi-Modal Fusion (LRE-MMF), designed to enhance diagnostic accuracy through the integration of structural MRI (sMRI) and resting-state functional MRI (rs-fMRI) data. The LRE-MMF method utilizes the complementary strengths of sMRI and rs-fMRI: sMRI provides detailed anatomical information, while rs-fMRI captures functional connectivity patterns. We applied this approach to a dataset consisting of 20 PD patients and 20 healthy controls (HC), all scanned with a 3 T MRI. The primary objective was to determine whether the integration of sMRI and rs-fMRI through the LRE-MMF method improves the classification accuracy between PD and HC subjects. LRE-MMF involves the division of imaging data into localized regions, followed by feature extraction and dimensionality reduction using Principal Component Analysis (PCA). The resulting features were fused and processed through a neural network to learn high-level representations. The model achieved an accuracy of 75 %, with a precision of 0.8125, recall of 0.65, and an AUC of 0.8875. The validation accuracy curves indicated good generalization, with significant brain regions identified, including the caudate, putamen, thalamus, supplementary motor area, and precuneus, as per the AAL atlas. These results demonstrate the potential of the LRE-MMF method for improving early diagnosis and understanding of PD by effectively utilizing both sMRI and rs-fMRI data. This approach could contribute to the development of more accurate diagnostic tools.
帕金森病(PD)是一种常见的神经退行性疾病,其特征是多巴胺能神经元进行性丧失,导致运动和非运动症状。由于早期症状的微妙和多变性质,早期和准确的诊断具有挑战性。本研究旨在通过提出一种新的方法来解决这些诊断挑战,该方法称为局部区域提取和多模态融合(LRE-MMF),旨在通过整合结构磁共振成像(sMRI)和静息态功能磁共振成像(rs-fMRI)数据来提高诊断准确性。LRE-MMF 方法利用了 sMRI 和 rs-fMRI 的互补优势:sMRI 提供详细的解剖信息,而 rs-fMRI 则捕获功能连接模式。我们将该方法应用于由 20 名 PD 患者和 20 名健康对照者(HC)组成的数据集,所有患者均使用 3T MRI 进行扫描。主要目标是确定通过 LRE-MMF 方法整合 sMRI 和 rs-fMRI 是否可以提高 PD 和 HC 受试者之间的分类准确性。LRE-MMF 涉及将成像数据分为局部区域,然后使用主成分分析(PCA)进行特征提取和降维。得到的特征通过神经网络融合和处理,以学习高级表示。该模型的准确率为 75%,精度为 0.8125,召回率为 0.65,AUC 为 0.8875。验证精度曲线表明具有良好的泛化能力,确定了重要的大脑区域,包括尾状核、壳核、丘脑、辅助运动区和楔前叶,根据 AAL 图谱。这些结果表明,LRE-MMF 方法通过有效利用 sMRI 和 rs-fMRI 数据,具有改善 PD 早期诊断和理解的潜力。这种方法可以为开发更准确的诊断工具做出贡献。