School of Science, Xi'an University of Technology, Xi'an 710054, PR China.
School of Mathematics and Information Science, Baoji University of Arts and Sciences, Baoji 721013, PR China.
Math Biosci. 2024 Nov;377:109301. doi: 10.1016/j.mbs.2024.109301. Epub 2024 Sep 20.
Intermittent androgen-deprivation therapy (IADT) can be beneficial to delay the occurrence of treatment resistance and cancer relapse compared to the standard continuous therapy. To study the effect of IADT in controlling prostate cancer, we developed a Filippov prostate cancer model with a joint threshold function: therapy is implemented once the total population of androgen-dependent cells (AC-Ds) and androgen-independent cells (AC-Is) is greater than the threshold value ET, and it is suspended once the population is less than ET. As the parameters vary, our model undergoes a series of sliding bifurcations, including boundary node, focus, saddle, saddle-node and tangency bifurcations. We also obtained the coexistence of one, two or three real equilibria and the bistability of two equilibria. Our results demonstrate that the population of AC-Is can be contained at a predetermined level if the initial population of AC-Is is less than this level, and we choose a suitable threshold value.
间歇性雄激素剥夺疗法(IADT)与标准连续疗法相比,可以延迟治疗抵抗和癌症复发的发生。为了研究 IADT 在控制前列腺癌方面的效果,我们开发了一个具有联合阈值函数的 Filippov 前列腺癌模型:一旦雄激素依赖性细胞(AC-Ds)和雄激素非依赖性细胞(AC-Is)的总数大于阈值 ET,就会实施治疗,一旦数量小于 ET,就会暂停治疗。随着参数的变化,我们的模型经历了一系列滑动分岔,包括边界节点、焦点、鞍点、鞍结和切分岔。我们还得到了一个、两个或三个实平衡点的共存和两个平衡点的双稳性。我们的结果表明,如果 AC-Is 的初始数量小于这个水平,并且我们选择一个合适的阈值,那么 AC-Is 的数量可以被控制在预定的水平。