Suppr超能文献

基于金纳米颗粒界面修饰的势垒极性反转用于非易失性多级存储器和光电突触

Barrier Polarity Reversal Based on Interfacial Modification of Au Nanoparticles for Nonvolatile Multilevel Memory and Optoelectronic Synapses.

作者信息

Tang Jie, Xiong YuanQiang, Ye LiYu, Li YuHang, Li WanJun, Yu Peng

机构信息

Chongqing Key Laboratory of Photo-Electric Functional Materials and Laser Technology, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China.

出版信息

ACS Appl Mater Interfaces. 2024 Oct 2;16(39):52692-52702. doi: 10.1021/acsami.4c11926. Epub 2024 Sep 23.

Abstract

Optoelectronic synaptic devices, integrating light sensing and information processing capabilities, have emerged as advantageous tools for the implementation of visual neuromorphic computing. However, the transient light-triggered response characteristic typically results in unstable memory retention times and restricted current response ranges, posing significant challenges to the development and practical application of neural network systems. In response to these limitations, this study developed a nonvolatile optoelectronic memory based on the indium tin oxide (ITO)/Au nanoparticles (NPs)/amorphous GaO (a-GaO)/Pt structure. Unlike conventional optoelectronic memories, this device features a modification with Au NPs that markedly enhances the Schottky barrier height at the interface. Au NPs function as a charge-trapping layer for sensitive and large-scale modulation of the barrier by the light field, thereby enabling the nonvolatile reversal of the device's barrier polarity. This innovative approach enables controllable multilevel data storage with an ultra large on/off ratio (∼10) and excellent retention capability exceeding 12,000 s. Additionally, the device emulates essential synaptic functions and demonstrates potential application values in visual weak signal perception and image memory. This study introduces a mechanism for Schottky barrier polarity control and presents a promising strategy for the development of future high-performance integrated devices and optoelectronic synaptic elements.

摘要

集成了光传感和信息处理能力的光电突触器件,已成为实现视觉神经形态计算的有利工具。然而,瞬态光触发响应特性通常会导致不稳定的记忆保持时间和受限的电流响应范围,这对神经网络系统的开发和实际应用构成了重大挑战。针对这些限制,本研究开发了一种基于氧化铟锡(ITO)/金纳米颗粒(NPs)/非晶氧化镓(a-GaO)/铂结构的非易失性光电存储器。与传统的光电存储器不同,该器件具有金纳米颗粒修饰,显著提高了界面处的肖特基势垒高度。金纳米颗粒作为电荷俘获层,可通过光场对势垒进行灵敏且大规模的调制,从而实现器件势垒极性的非易失性反转。这种创新方法能够实现可控的多级数据存储,具有超大的开/关比(约10)和超过12000秒的优异保持能力。此外,该器件模拟了基本的突触功能,并在视觉弱信号感知和图像记忆方面展现出潜在的应用价值。本研究介绍了一种肖特基势垒极性控制机制,并为未来高性能集成器件和光电突触元件的开发提出了一种有前景的策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验