Suppr超能文献

DNA 稳定同位素探针和宏基因组学揭示了微氧根际生境中核心微生物区系对 Fe(II)的氧化作用,以减轻水稻中镉和菲的积累。

DNA-stable isotope probing and metagenomics reveal Fe(II) oxidation by core microflora in microoxic rhizospheric habitats to mitigate the accumulation of cadmium and phenanthrene in rice.

机构信息

College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan, 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan, 411105, China.

College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan, 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan, 411105, China.

出版信息

Environ Pollut. 2024 Dec 1;362:125012. doi: 10.1016/j.envpol.2024.125012. Epub 2024 Sep 21.

Abstract

Rice rhizosphere soil-porewater microdomains exist within an iron (Fe)-rich microoxic habitat during paddy soil flooding. However, the response mechanisms of core microflora in this habitat to Fe(II)-oxidation-mediated cadmium (Cd) and phenanthrene (Phen) remain unclear. Using gel-stabilized gradient systems to replicate the microoxic conditions in the rice rhizosphere porewater, we found that microaerophilic rhizobacteria drove Fe(II) oxidation to yield iron oxides, thereby reducing the Cd and Phen contents in the rhizosphere porewater and rice (Cd and Phen decreased by 15.9%-78.0% and 10.1%-37.4%, respectively). However, co-exposure to Cd and Phen resulted in a greater reduction in the Cd uptake and a greater increase in the Phen uptake in rice as compared to those in the Cd or Phen treatments, possibly attributing to the cation-π interactions between Cd and Phen, as well as competition between the adsorption sites on the roots. The elevation of Cd-tolerant genes and Phen-degradation genes in biogenic cell-mineral aggregates unveiled the survival strategies of rhizobacteria with respect to Cd and Phen in the microoxic habitat. Potential Cd-tolerant rhizobacteria (e.g., Pandoraea and Comamonas) and Phen-degradation rhizobacteria (e.g., Pseudoxanthobacter) were identified through the DNA-SIP and 16S rRNA gene amplicon sequencing. Metagenomic analysis further confirmed that these core microbes harbor Cd-tolerant, Phen-degradation, and Fe(II) oxidation genes, supporting their metabolic potential for Cd and/or Phen in the microoxic habitat of the rice rhizosphere. These findings suggest the potential mechanism and ecological significance of core rhizospheric microbial-driven Fe(II) oxidation in mitigating the bioavailability of Cd and Phen in paddy soil during flooding.

摘要

在稻田土壤淹水期间,水稻根际土壤-孔隙水微域存在一个富铁的微氧生境。然而,该生境中核心微生物区系对 Fe(II)氧化介导的镉 (Cd) 和菲 (Phen) 的响应机制尚不清楚。本研究使用凝胶稳定的梯度系统复制水稻根际孔隙水中的微氧条件,发现微好氧根际细菌驱动 Fe(II)氧化生成铁氧化物,从而降低根际孔隙水中和水稻中的 Cd 和 Phen 含量(Cd 和 Phen 分别降低 15.9%-78.0%和 10.1%-37.4%)。然而,与 Cd 或 Phen 处理相比,Cd 和 Phen 共暴露导致水稻对 Cd 的吸收减少更多,对 Phen 的吸收增加更多,这可能归因于 Cd 和 Phen 之间的阳离子-π 相互作用以及根表面吸附位点之间的竞争。生物成因的细胞-矿物团聚体中 Cd 耐受基因和 Phen 降解基因的升高揭示了根际细菌在微氧生境中应对 Cd 和 Phen 的生存策略。通过 DNA-SIP 和 16S rRNA 基因扩增子测序,鉴定出潜在的 Cd 耐受根际细菌(如 Pandoraea 和 Comamonas)和 Phen 降解根际细菌(如 Pseudoxanthobacter)。宏基因组分析进一步证实,这些核心微生物具有 Cd 耐受、Phen 降解和 Fe(II)氧化基因,支持它们在水稻根际微氧生境中对 Cd 和/或 Phen 的代谢潜力。这些发现表明了核心根际微生物驱动 Fe(II)氧化在减轻淹水期间稻田土壤中 Cd 和 Phen 生物有效性方面的潜在机制和生态意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验