Vostal Lauren E, Dahan Noa E, Zhang Wenzhu, Reynolds Matthew J, Chait Brian T, Kapoor Tarun M
bioRxiv. 2024 Sep 9:2024.09.08.611915. doi: 10.1101/2024.09.08.611915.
Errors in proteostasis, which requires regulated degradation and recycling of diverse proteins, are linked to aging, cancer and neurodegenerative disease (1). In particular, recycling proteins from multiprotein complexes, organelles and membranes is initiated by ubiquitylation, extraction and unfolding by the essential mechanoenzyme VCP (2-4), and ubiquitin removal by deubiquitinases (DUBs), a class of ∼100 ubiquitin-specific proteases in humans (5, 6). As VCP's substrate recognition requires ubiquitylation, the removal of ubiquitins from substrates for recycling must follow extraction and unfolding. How the activities of VCP and different DUBs are coordinated for protein recycling or other fates is unclear. Here, we employ a photochemistry-based approach to profile proteome-wide domain-specific VCP interactions in living cells (7). We identify DUBs that bind near the entry, exit, or both sites of VCP's central pore, the channel for ATP-dependent substrate translocation (8-10). From this set of DUBs, we focus on VCPIP1, required for organelle assembly and DNA repair (11-13), that our chemical proteomics workflow indicates binds the central pore's entry and exit sites. We determine a ∼3Å cryo-EM structure of the VCP-VCPIP1 complex and find up to 3 VCPIP1 protomers interact with the VCP hexamer. VCPIP1's UBX-L domain binds VCP's N-domain in a 'down' conformation, linked to VCP's ADP-bound state (2, 14), and the deubiquitinase domain is positioned at the central pore's exit site, poised to remove ubiquitin following substrate unfolding. We find that VCP stimulates VCPIP1's DUB activity and use mutagenesis and single-molecule mass photometry assays to test the structural model. Together, our data suggest that DUBs bind VCP at distinct sites and reveal how the two enzyme activities can be coordinated to achieve specific downstream outcomes for ubiquitylated proteins.
蛋白质稳态需要对多种蛋白质进行有序降解和循环利用,其过程中的错误与衰老、癌症和神经退行性疾病相关(1)。具体而言,从多蛋白复合物、细胞器和膜中回收蛋白质是由泛素化启动的,通过必需的机械酶VCP进行提取和展开(2 - 4),然后由去泛素化酶(DUBs)去除泛素,人类中有一类约100种泛素特异性蛋白酶属于去泛素化酶(5, 6)。由于VCP对底物的识别需要泛素化,因此从底物上移除泛素以进行循环利用必须在提取和展开之后。目前尚不清楚VCP和不同DUBs的活性如何协同以实现蛋白质循环利用或其他命运。在这里,我们采用基于光化学的方法来分析活细胞中全蛋白质组范围内结构域特异性的VCP相互作用(7)。我们鉴定出在VCP中央孔的入口、出口或两个位点附近结合的DUBs,中央孔是ATP依赖的底物转运通道(8 - 10)。在这组DUBs中,我们聚焦于细胞器组装和DNA修复所需的VCPIP1(11 - 13),我们的化学蛋白质组学工作流程表明它结合中央孔的入口和出口位点。我们确定了VCP - VCPIP1复合物的约3Å冷冻电镜结构,发现多达3个VCPIP1原聚体与VCP六聚体相互作用。VCPIP1的UBX - L结构域以“向下”构象结合VCP的N结构域,这与VCP的ADP结合状态相关(2, 14),而去泛素化酶结构域位于中央孔的出口位点,准备在底物展开后去除泛素。我们发现VCP刺激VCPIP1的DUB活性,并使用诱变和单分子质量光度测定法来测试结构模型。总之,我们的数据表明DUBs在不同位点结合VCP,并揭示了这两种酶的活性如何协同以实现泛素化蛋白质的特定下游结果。