Suppr超能文献

BLESS:用于生物标志物识别的袋装逻辑回归法

BLESS: bagged logistic regression for biomarker identification.

作者信息

Gardiner Kyle, Zhang Xuekui, Xing Li

机构信息

Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon, SK, Canada.

Department of Mathematics and Statistics, University of Victoria, Victoria, BC, Canada.

出版信息

Front Genet. 2024 Sep 10;15:1336891. doi: 10.3389/fgene.2024.1336891. eCollection 2024.

Abstract

The traditional single nucleotide polymorphism (SNP)-wise approach in genome-wide association studies is focused on examining the marginal association between each SNP with the outcome separately and applying multiple testing adjustments to the resulting -values to reduce false positives. However, the approach suffers a lack of power in identifying biomarkers. We design an ensemble machine learning approach to aggregate results from logistic regression models based on multiple subsamples, which helps to identify biomarkers from high-dimensional genomic data. We use different methods to analyze a genome-wide association study from the Alzheimer's Disease Neuroimaging Initiative. The SNP-wise approach does not identify any significant signal, while our novel approach provides a list of ranked SNPs associated with the cognitive functions of interests.

摘要

全基因组关联研究中传统的单核苷酸多态性(SNP)方法专注于分别检验每个SNP与结果之间的边际关联,并对所得的p值进行多重检验校正以减少假阳性。然而,该方法在识别生物标志物方面缺乏效力。我们设计了一种集成机器学习方法,以汇总基于多个子样本的逻辑回归模型的结果,这有助于从高维基因组数据中识别生物标志物。我们使用不同方法分析了来自阿尔茨海默病神经成像计划的全基因组关联研究。SNP方法未识别出任何显著信号,而我们的新方法提供了一份与感兴趣的认知功能相关的SNP排名列表。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8c0/11419974/2111d9142a74/fgene-15-1336891-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验