Suppr超能文献

从药物化学角度评估人类蛋白质组的暗物质。

Assessing Darkness of the Human Kinome from a Medicinal Chemistry Perspective.

机构信息

B-IT, Department of Life Science Informatics and Data Science, Rheinische Friedrich-Wilhelms-Universität, Bonn D-53115, Germany.

Lamarr Institute for Machine Learning and Artificial Intelligence, Bonn D-53115, Germany.

出版信息

J Med Chem. 2024 Oct 10;67(19):17919-17928. doi: 10.1021/acs.jmedchem.4c01992. Epub 2024 Sep 25.

Abstract

In drug discovery, human protein kinases (PKs) represent one of the major target classes due to their central role in cellular signaling, implication in various diseases as a consequence of deregulated signaling, and notable druggability. Individual PKs and their disease biology have been explored to different degrees, giving rise to heterogeneous functional knowledge and disease associations across the human kinome. The U.S. National Institutes of Health previously designated 162 understudied ("dark") human PKs and lipid kinases due to the lack of functional annotations and high-quality molecular probes for functional investigations. Given the large volumes of available PK inhibitors (PKIs) and activity data, we have systematically analyzed the distribution of PKIs and associated data at different confidence levels across the human kinome and distinguished between chemically explored, underexplored, and unexplored PKs. The analysis provides a medicinal chemistry-centric view of PK exploration and further extends prior assessment of the dark kinome.

摘要

在药物发现中,由于人类蛋白激酶 (PKs) 在细胞信号转导中起着核心作用,其信号转导失调与各种疾病有关,且具有显著的可成药性,因此成为主要的靶标类别之一。已经对个别 PKs 及其疾病生物学进行了不同程度的探索,导致人类激酶组中存在异质的功能知识和疾病关联。由于缺乏功能注释和用于功能研究的高质量分子探针,美国国立卫生研究院 (NIH) 此前指定了 162 种研究不足的(“暗”)人类 PKs 和脂质激酶。鉴于可用的 PK 抑制剂 (PKIs) 和活性数据的大量存在,我们已经系统地分析了 PKI 和相关数据在人类激酶组中的不同置信水平的分布,并区分了化学探索、探索不足和未探索的 PKs。该分析从药物化学的角度提供了对 PK 探索的看法,并进一步扩展了对暗激酶组的先前评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验