Suppr超能文献

建立模型预测神经重症监护病房因医院获得性肺炎而发生颅内破裂动脉瘤患者发生多重耐药菌感染的风险。

Development of a model to predict the risk of multi-drug resistant organism infections in ruptured intracranial aneurysms patients with hospital-acquired pneumonia in the neurological intensive care unit.

机构信息

Department of Neurosurgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China; Department of Neuro-Intensive Care Unit, Northern Jiangsu People's Hospital, Yangzhou, China.

Department of Neurosurgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China.

出版信息

Clin Neurol Neurosurg. 2024 Nov;246:108568. doi: 10.1016/j.clineuro.2024.108568. Epub 2024 Sep 21.

Abstract

OBJECTIVE

This study was developed to explore the incidence of multi-drug resistant organism (MDRO) infections among ruptured intracranial aneurysms(RIA) patient with hospital-acquired pneumonia(HAP) in the neurological intensive care unit (NICU), and to establish risk factors related to the development of these infections.

METHODS

We collected clinical and laboratory data from 328 eligible patients from January 2018 to December 2022. Bacterial culture results were used to assess MDRO strain distributions, and risk factors related to MDRO infection incidence were identified through logistic regression analyses. These risk factors were further used to establish a predictive model for the incidence of MDRO infections, after which this model underwent internal validation.

RESULTS

In this study cohort, 26.5 % of RIA patients with HAP developed MDRO infections (87/328). The most common MDRO pathogens in these patients included Multidrug-resistant Klebsiella pneumoniae (34.31 %) and Multidrug-resistant Acinetobacter baumannii (27.45 %). Six MDRO risk factors, namely, diabetes (P = 0.032), tracheotomy (P = 0.004), history of mechanical ventilation (P = 0.033), lower albumin levels (P < 0.001), hydrocephalus (P < 0.001) and Glasgow Coma Scale (GCS) score ≤8 (P = 0.032) were all independently correlated with MDRO infection incidence. The prediction model exhibited satisfactory discrimination (area under the curve [AUC], 0.842) and calibration (slope, 1.000), with a decision curve analysis further supporting the clinical utility of this model.

CONCLUSIONS

In summary, risk factors and bacterial distributions associated with MDRO infections among RIA patients with HAP in the NICU were herein assessed. The developed predictive model can aid clinicians to identify and screen high-risk patients for preventing MDRO infections.

摘要

目的

本研究旨在探讨神经重症监护病房(NICU)中颅内破裂动脉瘤(RIA)合并医院获得性肺炎(HAP)患者中多重耐药菌(MDRO)感染的发生率,并确定与这些感染发生相关的危险因素。

方法

我们收集了 2018 年 1 月至 2022 年 12 月期间 328 名符合条件的患者的临床和实验室数据。细菌培养结果用于评估 MDRO 菌株分布,并通过逻辑回归分析确定与 MDRO 感染发生率相关的危险因素。这些危险因素进一步用于建立 MDRO 感染发生率的预测模型,然后对该模型进行内部验证。

结果

在本研究队列中,26.5%的 RIA 合并 HAP 患者发生 MDRO 感染(87/328)。这些患者中最常见的 MDRO 病原体包括多药耐药肺炎克雷伯菌(34.31%)和多药耐药鲍曼不动杆菌(27.45%)。6 个 MDRO 危险因素,即糖尿病(P=0.032)、气管切开术(P=0.004)、机械通气史(P=0.033)、低白蛋白水平(P<0.001)、脑积水(P<0.001)和格拉斯哥昏迷评分(GCS)≤8(P=0.032),均与 MDRO 感染发生率独立相关。预测模型具有良好的区分度(曲线下面积[AUC],0.842)和校准度(斜率,1.000),决策曲线分析进一步支持了该模型的临床实用性。

结论

总之,本研究评估了 NICU 中 RIA 合并 HAP 患者中与 MDRO 感染相关的危险因素和细菌分布。所开发的预测模型可以帮助临床医生识别和筛选高风险患者,以预防 MDRO 感染。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验