Department of Chemistry, University of California, Davis, California 95616, United States.
West Coast Metabolomics Center, University of California, Davis, California 95616, United States.
J Chem Inf Model. 2024 Oct 14;64(19):7470-7487. doi: 10.1021/acs.jcim.4c00760. Epub 2024 Sep 27.
Compound identification is at the center of metabolomics, usually by comparing experimental mass spectra against library spectra. However, most compounds are not commercially available to generate library spectra. Hence, for such compounds, MS/MS spectra need to be predicted. Machine learning and heuristic models have largely failed except for lipids. Here, quantum chemistry software can be used to predict mass spectra. However, quantum chemistry predictions for collision induced dissociation (CID) mass spectra in LC-MS/MS are rare. We present the CIDMD (Collision-Induced Dissociation via Molecular Dynamics) framework to model CID-based MS/MS spectra. It uses first-principles molecular dynamics (MD) to simulate the physical process of molecular collisions in CID tandem mass spectrometry. First, molecular ions are constructed at specific protonation sites. Using density functional theory, these protonated ions are targeted by argon collider gas atoms at user-specified velocities. Subsequent bond breakages are simulated over time for at least 1,000 fs. Each simulation is repeated multiple times from various collisional directions. Fragmentations are accumulated over those repeated collisions to generate CIDMD in silico mass spectra. Twelve small metabolites (<205 Da) were selected to test the accuracy of this framework in comparison to experimental MS/MS spectra. When testing different protomers, collider velocities, number of simulations, simulation time and impact factor b cutoffs, we yielded 261 predicted mass spectra. These in silico spectra resulted in entropy similarity scores of an average 624 ± 189 for all 261 spectra compared to their corresponding experimental spectra, which improved to 828 ± 77 when using optimal parameters of the most probable protomers for 12 molecules. With increasing molecular mass, higher velocities achieved better results. Similarly, different protomers showed large differences in fragmentation; hence, with increasing numbers of protomers and tautomers, the average CIDMD prediction accuracy decreased. Mechanistic details showed that specific fragment ions can be produced from different protomers via multiple fragmentation pathways. We propose that CIDMD is a suitable tool to predict mass spectra of small metabolites like produced by the gut microbiome.
化合物鉴定是代谢组学的核心,通常通过将实验质谱与库谱进行比较来实现。然而,大多数化合物无法获得商业途径来生成库谱。因此,对于这些化合物,需要预测 MS/MS 谱。机器学习和启发式模型在很大程度上都失败了,除了脂质。在这里,可以使用量子化学软件来预测质谱。然而,LC-MS/MS 中基于碰撞诱导解离(CID)的质谱的量子化学预测很少。我们提出了 CIDMD(通过分子动力学进行碰撞诱导解离)框架来模拟基于 CID 的 MS/MS 谱。它使用第一性原理分子动力学(MD)来模拟 CID 串联质谱中分子碰撞的物理过程。首先,在特定的质子化位点构建分子离子。使用密度泛函理论,将这些质子化离子靶向用户指定速度的氩碰撞气体原子。随后,在至少 1000 fs 的时间内模拟随后的键断裂。每个模拟从不同的碰撞方向重复多次。将这些重复碰撞的碎片累积起来,以生成 CIDMD 的计算机模拟质谱。选择了 12 种小分子代谢物(<205 Da)来测试该框架与实验 MS/MS 谱相比的准确性。在测试不同的前质子体、碰撞器速度、模拟次数、模拟时间和影响因子 b 截止值时,我们得到了 261 个预测的质谱。与相应的实验谱相比,这些计算机模拟谱的熵相似性评分平均为 624±189,对于 12 个分子,使用最可能的前质子体的最优参数时,评分提高到 828±77。随着分子质量的增加,更高的速度会产生更好的结果。同样,不同的前质子体在碎片方面表现出很大的差异;因此,随着前质子体和互变异构体数量的增加,平均 CIDMD 预测精度降低。机理细节表明,特定的碎片离子可以通过多种碎裂途径从前质子体中产生。我们提出 CIDMD 是一种合适的工具,可以预测肠道微生物组等产生的小分子代谢物的质谱。