Suppr超能文献

眶周年轻化的人工智能分析

Artificial Intelligence Analysis of Periorbital Rejuvenation.

作者信息

Kreh Caroline C, Roider Laura, Firouzbakht Peter K, Nathan Charles, Prada Christian A, Lund Herflund G, Sarhaddi Deniz, Chen Kevin

出版信息

Aesthet Surg J. 2025 Jan 16;45(2):215-220. doi: 10.1093/asj/sjae201.

Abstract

BACKGROUND

Periorbital rejuvenation surgery aims to restore a youthful appearance to the face. Despite the popularity of these procedures, few objective measurements exist to evaluate their impact on perceived facial aging.

OBJECTIVES

In this study we aimed to quantify the impact of brow lift and blepharoplasty on age as perceived by convolutional neural network (CNN) algorithms.

METHODS

A retrospective review was performed on patients who underwent upper blepharoplasty, lower blepharoplasty, and/or brow lift at a single cosmetic practice between 2018 and 2023. Collected data included patient demographics, procedure performed, fat pad resection, and preoperative and postoperative frontal images. Each photograph was analyzed by 4 artificial intelligence (AI) platforms to estimate the change in perceived age following surgery. The estimated age reduction was compared between procedures.

RESULTS

Of the 153 included patients, 118 underwent blepharoplasty, 12 underwent brow lift, and 23 had both blepharoplasty and brow lift. Across all AI platforms, the mean age estimation percentage error was 10.6%, with a tendency for AI to underestimate true age. Univariate analysis revealed an age reduction following any surgery of 1.03 years (P < .001). When controlling for other variables, brow lift patients saw a mean age reduction of 1.432 years (P = .031). Upper and lower blepharoplasty, patient characteristics, and ancillary procedures were not found to be independently associated with significant age reduction.

CONCLUSIONS

Brow lifts provide significant reduction in perceived age. When planning for periorbital rejuvenation, a thorough preoperative evaluation should be performed, and additional consideration should be given to brow lifting procedures.

摘要

背景

眶周年轻化手术旨在恢复面部的年轻外观。尽管这些手术很受欢迎,但用于评估其对面部老化感知影响的客观测量方法却很少。

目的

在本研究中,我们旨在量化提眉术和眼睑成形术对卷积神经网络(CNN)算法所感知年龄的影响。

方法

对2018年至2023年期间在一家美容机构接受上睑成形术、下睑成形术和/或提眉术的患者进行回顾性研究。收集的数据包括患者人口统计学信息、所进行的手术、脂肪垫切除情况以及术前和术后的正面图像。每张照片由4个人工智能(AI)平台进行分析,以估计手术后感知年龄的变化。比较不同手术之间估计的年龄降低情况。

结果

在纳入的153名患者中,118人接受了眼睑成形术,12人接受了提眉术,23人同时接受了眼睑成形术和提眉术。在所有AI平台上,平均年龄估计百分比误差为10.6%,AI有低估真实年龄的趋势。单因素分析显示,任何手术后年龄降低1.03岁(P <.001)。在控制其他变量时,提眉术患者的平均年龄降低1.432岁(P =.031)。未发现上睑和下睑成形术、患者特征及辅助手术与显著的年龄降低独立相关。

结论

提眉术能显著降低感知年龄。在规划眶周年轻化手术时,应进行全面的术前评估,并应额外考虑提眉手术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验