Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique, UMR 7039, Université de Lorraine, Vandœuvre-lès-Nancy, France; Research Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, 54519 Vandœuvre-lès-Nancy, France.
LPEM UMR 8213, ESPCI Paris, PSL University, CNRS, Sorbonne University, Paris, France.
Photodiagnosis Photodyn Ther. 2024 Oct;49:104337. doi: 10.1016/j.pdpdt.2024.104337. Epub 2024 Sep 26.
Oral squamous cell carcinoma (OSCC) treatment mainly relies on surgery. The status of surgical margin is a major prognostic factor for patients as positive margins are associated with lower survival. However, the anatomical particularities of this area complicate margin establishment. Fluorescence guided surgery (FGS) could be employed as an intraoperative technique to improve tumor resection and margin investigation. Quantum dots (QDs) serve as ideal contrast agents in this technique due to their brightness and stability. Since αVβ6 integrin is overexpressed in OSCC, coupling QDs with A20FMDV2 peptide (QDs-A20) targeting the αVβ6 integrin constitute a real opportunity. This study investigates the accumulation of QDs-A20 in 2D and 3D tongue cancer models, as well as QDs coupled to a scrambled version of this peptide (QDs-Scr) or without peptide (QDs-SPP), for imaging purposes.
CdSeCdS/ZnS quantum dots were coated with sulfobetaine polymers (QDs-SPP) and conjugated to A20FMDV2 peptide (QDs-A20) or its scrambled version (QDs-Scr). Two-dimensional (2D) and three-dimensional (3D) tongue cancer cells HSC-3 were employed to test the effectiveness of intracellular accumulation of all types of QDs. Targeting ability of each QDs was assessed by flow cytometry, while the depth of penetration into cancerous spheroids was assessed by fluorescence microscopy.
QDs coating with sulfobetaines polymers (QDs-SPP) completely prevented their internalization by HSC-3 cells in 2D and 3D models, making QDs stealthy and preventing their non-specific accumulation. Conversely, peptides conjugated QDs (QDs-A20 & QDs-Scr) labeled HSC-3 monolayers and managed to label spheroid periphery up to 23 µm deep. However, no difference in accumulation was found between these two QDs whereas only A20 peptide could potentially target αVβ6 integrin. It appears that peptide conjugation increased QDs zeta potential, promoting their adsorption and subsequent endocytosis by cells, independently from αVβ6 integrin.
The present study highlighted the impact of peptide conjugation on QDs internalization in 2D and 3D tongue cancer cell models. QDs-SPP were stealthy and did not accumulate in cells. Peptides conjugated QDs could be used as contrast agents, but in a passive targeting approach. Modifications to surface chemistry are required to target αVβ6 integrin through active targeting. This study also highlights the need for controls such as scrambled peptides, the absence of which can lead to misinterpretation of results.
口腔鳞状细胞癌(OSCC)的治疗主要依赖于手术。手术切缘的状态是患者的一个主要预后因素,因为阳性切缘与生存率降低有关。然而,该区域的解剖特殊性使切缘的建立变得复杂。荧光引导手术(FGS)可作为一种术中技术,以提高肿瘤切除和切缘检查。量子点(QDs)由于其亮度和稳定性,是该技术中的理想对比剂。由于 αVβ6 整合素在 OSCC 中过度表达,因此将 QDs 与靶向 αVβ6 整合素的 A20FMDV2 肽(QDs-A20)偶联构成了一个真正的机会。本研究调查了 QDs-A20 在 2D 和 3D 舌癌模型中的积累情况,以及与该肽的 scrambled 版本(QDs-Scr)或无肽(QDs-SPP)偶联的 QDs 用于成像目的。
用磺基甜菜碱聚合物(QDs-SPP)包被 CdSeCdS/ZnS 量子点,并与 A20FMDV2 肽(QDs-A20)或其 scrambled 版本(QDs-Scr)偶联。二维(2D)和三维(3D)舌癌细胞 HSC-3 用于测试所有类型 QDs 的细胞内积累效果。通过流式细胞术评估每种 QDs 的靶向能力,通过荧光显微镜评估其进入癌变球体的穿透深度。
用磺基甜菜碱聚合物(QDs-SPP)包裹的 QDs 完全阻止了它们在 2D 和 3D 模型中被 HSC-3 细胞内化,使 QDs 具有隐身性,并防止其非特异性积累。相反,与肽偶联的 QDs(QDs-A20 和 QDs-Scr)标记了 HSC-3 单层,并设法标记了球体周边 23 µm 深。然而,这两种 QDs 的积累没有差异,而只有 A20 肽可能潜在地靶向 αVβ6 整合素。似乎肽偶联增加了 QDs 的 ζ 电位,促进了它们被细胞吸附和随后的内吞作用,而与 αVβ6 整合素无关。
本研究强调了肽偶联对 2D 和 3D 舌癌细胞模型中 QDs 内化的影响。QDs-SPP 具有隐身性,不会在细胞内积累。与肽偶联的 QDs 可以用作对比剂,但采用的是被动靶向方法。需要对表面化学进行修饰,以通过主动靶向靶向 αVβ6 整合素。本研究还强调了需要使用对照物(如 scrambled 肽),否则可能会导致结果的误读。