Jurmeister Philipp, Leitheiser Maximilian, Arnold Alexander, Capilla Emma Payá, Mochmann Liliana H, Zhdanovic Yauheniya, Schleich Konstanze, Jung Nina, Chimal Edgar Calderon, Jung Andreas, Kumbrink Jörg, Harter Patrick, Prenißl Niklas, Elezkurtaj Sefer, Brcic Luka, Deigendesch Nikolaus, Frank Stephan, Hench Jürgen, Försch Sebastian, Breimer Gerben, van Engen van Grunsven Ilse, Lassche Gerben, van Herpen Carla, Zhou Fang, Snuderl Matija, Agaimy Abbas, Müller Klaus-Robert, von Deimling Andreas, Capper David, Klauschen Frederick, Ihrler Stephan
Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany.
Mod Pathol. 2024 Dec;37(12):100625. doi: 10.1016/j.modpat.2024.100625. Epub 2024 Sep 25.
Tumors of the major and minor salivary glands histologically encompass a diverse and partly overlapping spectrum of frequent diagnostically challenging neoplasms. Despite recent advances in molecular testing and the identification of tumor-specific mutations or gene fusions, there is an unmet need to identify additional diagnostic biomarkers for entities lacking specific alterations. In this study, we collected a comprehensive cohort of 363 cases encompassing 20 different salivary gland tumor entities and explored the potential of DNA methylation to classify these tumors. We were able to show that most entities show specific epigenetic signatures and present a machine learning algorithm that achieved a mean balanced accuracy of 0.991. Of note, we showed that cribriform adenocarcinoma is epigenetically distinct from classical polymorphous adenocarcinoma, which could support risk stratification of these tumors. Myoepithelioma and pleomorphic adenoma form a uniform epigenetic class, supporting the theory of a single entity with a broad but continuous morphologic spectrum. Furthermore, we identified a histomorphologically heterogeneous but epigenetically distinct class that could represent a novel tumor entity. In conclusion, our study provides a comprehensive resource of the DNA methylation landscape of salivary gland tumors. Our data provide novel insight into disputed entities and show the potential of DNA methylation to identify new tumor classes. Furthermore, in future, our machine learning classifier could support the histopathologic diagnosis of salivary gland tumors.
大、小唾液腺肿瘤在组织学上涵盖了一系列多样且部分重叠的常见肿瘤,这些肿瘤在诊断上具有挑战性。尽管分子检测以及肿瘤特异性突变或基因融合的鉴定取得了最新进展,但对于缺乏特定改变的肿瘤实体,仍需要鉴定更多的诊断生物标志物。在本研究中,我们收集了一个包含363例病例的综合队列,涵盖20种不同的唾液腺肿瘤实体,并探讨了DNA甲基化对这些肿瘤进行分类的潜力。我们能够证明,大多数实体显示出特定的表观遗传特征,并提出了一种机器学习算法,其平均平衡准确率达到0.991。值得注意的是,我们表明筛状腺癌在表观遗传学上与经典多形性腺瘤不同,这可能有助于这些肿瘤的风险分层。肌上皮瘤和多形性腺瘤形成一个统一的表观遗传类别,支持单一实体具有广泛但连续形态谱的理论。此外,我们鉴定出一个组织形态学上异质性但表观遗传学上不同的类别,可能代表一种新的肿瘤实体。总之,我们的研究提供了唾液腺肿瘤DNA甲基化图谱的综合资源。我们的数据为有争议的实体提供了新的见解,并显示了DNA甲基化在识别新肿瘤类别的潜力。此外,在未来,我们的机器学习分类器可以支持唾液腺肿瘤的组织病理学诊断。