Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands.
Translational Plant Biology, Department of Biology, Utrecht University, Utrecht, The Netherlands.
Nat Commun. 2024 Sep 27;15(1):8353. doi: 10.1038/s41467-024-52594-x.
Microscopic imaging for studying plant-pathogen interactions is limited by its reliance on invasive histological techniques, like clearing and staining, or, for in vivo imaging, on complicated generation of transgenic pathogens. We present real-time 3D in vivo visualization of pathogen dynamics with label-free optical coherence tomography. Based on intrinsic signal fluctuations as tissue contrast we image filamentous pathogens and a nematode in vivo in 3D in plant tissue. We analyze 3D images of lettuce downy mildew infection (Bremia lactucae) to obtain hyphal volume and length in three different lettuce genotypes with different resistance levels showing the ability for precise (micro) phenotyping and quantification of the infection level. In addition, we demonstrate in vivo longitudinal imaging of the growth of individual pathogen (sub)structures with functional contrast on the pathogen micro-activity revealing pathogen vitality thereby opening a window on the underlying molecular processes.
利用无标记光学相干断层扫描技术实时进行体内可视化三维成像,可在不依赖于清除和染色等侵袭性组织学技术的情况下,对植物病原体相互作用进行微观成像,或者在体内成像时,也无需依赖于复杂的转基因病原体的生成。我们基于组织对比的固有信号波动,对植物组织内的丝状病原体和线虫进行体内的无标记三维实时可视化成像。我们分析了生菜霜霉病(Bremia lactucae)感染的三维图像,以获得具有不同抗性水平的三种不同生菜基因型中的菌丝体体积和长度,这表明我们具有精确(微观)表型分析和量化感染水平的能力。此外,我们还展示了单个病原体(亚)结构的体内纵向生长的功能对比成像,从而揭示了病原体活力,使我们能够观察到潜在的分子过程,这为研究病原体微活性提供了新的视角。