Suppr超能文献

椭圆分布生物标志物的最优组合可提高诊断准确性。

On the Optimal Combination of Elliptically Distributed Biomarkers to Improve Diagnostic Accuracy.

机构信息

Department of Statistics, The George Washington University, Washington, DC 20052, USA.

Department of Defense (Retired), Silver Spring, MD 20910, USA.

出版信息

Genes (Basel). 2024 Aug 30;15(9):1145. doi: 10.3390/genes15091145.

Abstract

Diagnostic biomarkers play a critical role in biomedical research, particularly for the diagnosis and prediction of diseases, etc. To enhance diagnostic accuracy, extensive research about combining multiple biomarkers has been developed based on the multivariate normality, which is often not true in practice, as most biomarkers follow distributions that deviate from normality. While the likelihood ratio combination is recognized to be the optimal approach, it is complicated to calculate. To achieve a more accurate and effective combination of biomarkers, especially when these biomarkers deviate from normality, we propose using a receiver operating characteristic (ROC) curve methodology based on the optimal combination of elliptically distributed biomarkers. In this paper, we derive the ROC curve function for the elliptical likelihood ratio combination. Further, proceeding from the derived best combinations of biomarkers, we propose an efficient technique via nonparametric maximum likelihood estimate (NPMLE) to build empirical estimation. Simulation results show that the proposed elliptical combination method consistently provided better performance, demonstrating its robustness in handling various distribution types of biomarkers. We apply the proposed method to two real datasets: Autism/autism spectrum disorder (ASD) and neural tube defects (NTD). In both applications, the elliptical likelihood ratio combination improves the AUC value compared to the multivariate normal likelihood ratio combination and the best linear combination.

摘要

诊断生物标志物在生物医学研究中起着至关重要的作用,特别是在疾病的诊断和预测等方面。为了提高诊断的准确性,已经基于多元正态性开发了大量关于组合多个生物标志物的研究,而实际上,大多数生物标志物的分布并不符合正态性。虽然似然比组合被认为是最优的方法,但计算起来很复杂。为了更准确有效地组合生物标志物,特别是当这些生物标志物不符合正态性时,我们建议使用基于最优椭圆分布生物标志物组合的接收者操作特征 (ROC) 曲线方法。在本文中,我们推导出了椭圆似然比组合的 ROC 曲线函数。此外,从推导出来的最佳生物标志物组合出发,我们通过非参数最大似然估计 (NPMLE) 提出了一种有效的技术来构建经验估计。模拟结果表明,所提出的椭圆组合方法始终提供了更好的性能,证明了其在处理各种生物标志物分布类型方面的稳健性。我们将所提出的方法应用于两个真实数据集:自闭症/自闭症谱系障碍 (ASD) 和神经管缺陷 (NTD)。在这两个应用中,与多元正态似然比组合和最佳线性组合相比,椭圆似然比组合提高了 AUC 值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c56/11431207/004dbf8c8f17/genes-15-01145-g007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验