Suppr超能文献

利用临床特征和多导睡眠图变量预测术后谵妄的机器学习模型的开发与验证

Development and Validation of Machine Learning Models to Predict Postoperative Delirium Using Clinical Features and Polysomnography Variables.

作者信息

Ha Woo-Seok, Choi Bo-Kyu, Yeom Jungyeon, Song Seungwon, Cho Soomi, Chu Min-Kyung, Kim Won-Joo, Heo Kyoung, Kim Kyung-Min

机构信息

Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.

Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.

出版信息

J Clin Med. 2024 Sep 16;13(18):5485. doi: 10.3390/jcm13185485.

Abstract

Delirium affects up to 50% of patients following high-risk surgeries and is associated with poor long-term prognosis. This study employed machine learning to predict delirium using polysomnography (PSG) and sleep-disorder questionnaire data, and aimed to identify key sleep-related factors for improved interventions and patient outcomes. We studied 912 adults who underwent surgery under general anesthesia at a tertiary hospital (2013-2024) and had PSG within 5 years of surgery. Delirium was assessed via clinical diagnoses, antipsychotic prescriptions, and psychiatric consultations within 14 days postoperatively. Sleep-related data were collected using PSG and questionnaires. Machine learning predictions were performed to identify postoperative delirium, focusing on model accuracy and feature importance. This study divided the 912 patients into an internal training set (700) and an external test set (212). Univariate analysis identified significant delirium risk factors: midazolam use, prolonged surgery duration, and hypoalbuminemia. Sleep-related variables such as fewer rapid eye movement (REM) episodes and higher daytime sleepiness were also linked to delirium. An extreme gradient-boosting-based classification task achieved an AUC of 0.81 with clinical variables, 0.60 with PSG data alone, and 0.84 with both, demonstrating the added value of PSG data. Analysis of Shapley additive explanations values highlighted important predictors: surgery duration, age, midazolam use, PSG-derived oxygen saturation nadir, periodic limb movement index, and REM episodes, demonstrating the relationship between sleep patterns and the risk of delirium. The artificial intelligence model integrates clinical and sleep variables and reliably identifies postoperative delirium, demonstrating that sleep-related factors contribute to its identification. Predicting patients at high risk of developing postoperative delirium and closely monitoring them could reduce the costs and complications associated with delirium.

摘要

谵妄在高危手术后影响高达50%的患者,并与不良的长期预后相关。本研究采用机器学习,利用多导睡眠图(PSG)和睡眠障碍问卷数据预测谵妄,旨在确定关键的睡眠相关因素,以改善干预措施和患者预后。我们研究了912名在三级医院接受全身麻醉手术(2013 - 2024年)且在术后5年内进行了PSG检查的成年人。通过临床诊断、抗精神病药物处方以及术后14天内的精神科会诊来评估谵妄。使用PSG和问卷收集睡眠相关数据。进行机器学习预测以识别术后谵妄,重点关注模型准确性和特征重要性。本研究将912名患者分为内部训练集(700名)和外部测试集(212名)。单因素分析确定了显著的谵妄危险因素:咪达唑仑的使用、手术时间延长和低白蛋白血症。与睡眠相关的变量,如快速眼动(REM)发作次数减少和白天嗜睡程度较高,也与谵妄有关。基于极端梯度提升的分类任务在使用临床变量时AUC为0.81,仅使用PSG数据时为0.60,两者结合时为0.84,表明了PSG数据的附加价值。对Shapley加性解释值的分析突出了重要预测因素:手术时间、年龄、咪达唑仑的使用、PSG得出的最低氧饱和度、周期性肢体运动指数和REM发作次数,证明了睡眠模式与谵妄风险之间的关系。人工智能模型整合了临床和睡眠变量,并可靠地识别术后谵妄,表明睡眠相关因素有助于其识别。预测术后发生谵妄的高危患者并对其进行密切监测,可以降低与谵妄相关的成本和并发症。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51d2/11431977/9cf2f698060c/jcm-13-05485-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验