Kaul Chaitanya, Mitchell Kevin J, Kassem Khaled, Tragakis Athanasios, Kapitany Valentin, Starshynov Ilya, Villa Federica, Murray-Smith Roderick, Faccio Daniele
School of Computing Science, University of Glasgow, Glasgow G12 8QQ, UK.
School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK.
Sensors (Basel). 2024 Sep 10;24(18):5865. doi: 10.3390/s24185865.
In the field of detection and ranging, multiple complementary sensing modalities may be used to enrich information obtained from a dynamic scene. One application of this sensor fusion is in public security and surveillance, where efficacy and privacy protection measures must be continually evaluated. We present a novel deployment of sensor fusion for the discrete detection of concealed metal objects on persons whilst preserving their privacy. This is achieved by coupling off-the-shelf mmWave radar and depth camera technology with a novel neural network architecture that processes radar signals using convolutional Long Short-Term Memory (LSTM) blocks and depth signals using convolutional operations. The combined latent features are then magnified using deep feature magnification to reveal cross-modality dependencies in the data. We further propose a decoder, based on the feature extraction and embedding block, to learn an efficient upsampling of the latent space to locate the concealed object in the spatial domain through radar feature guidance. We demonstrate the ability to detect the presence and infer the 3D location of concealed metal objects. We achieve accuracies of up to 95% using a technique that is robust to multiple persons. This work provides a demonstration of the potential for cost-effective and portable sensor fusion with strong opportunities for further development.
在探测与测距领域,可以使用多种互补的传感模式来丰富从动态场景中获取的信息。这种传感器融合的一个应用领域是公共安全与监控,在该领域中,必须持续评估其有效性和隐私保护措施。我们提出了一种新颖的传感器融合部署方法,用于在保护人员隐私的同时离散检测人员身上隐藏的金属物体。这是通过将现成的毫米波雷达和深度相机技术与一种新颖的神经网络架构相结合来实现的,该神经网络架构使用卷积长短期记忆(LSTM)模块处理雷达信号,并使用卷积操作处理深度信号。然后,通过深度特征放大来放大组合后的潜在特征,以揭示数据中的跨模态依赖性。我们还基于特征提取和嵌入模块提出了一种解码器,以学习潜在空间的有效上采样,从而通过雷达特征引导在空间域中定位隐藏物体。我们展示了检测隐藏金属物体的存在并推断其三维位置的能力。我们使用一种对多个人具有鲁棒性的技术,实现了高达95%的准确率。这项工作展示了具有成本效益且便携的传感器融合的潜力,以及进一步发展的强大机遇。