Suppr超能文献

通过催化加氢脱氧升级热解生物油:聚焦催化剂、模型分子、失活及反应路线的综述

Upgrading of Pyrolysis Bio-Oil by Catalytic Hydrodeoxygenation, a Review Focused on Catalysts, Model Molecules, Deactivation, and Reaction Routes.

作者信息

Carrasco Díaz Alejandra, Abdelouahed Lokmane, Brodu Nicolas, Montes-Jiménez Vicente, Taouk Bechara

机构信息

LSPC-Laboratoire de Securité des Procédes Chimiques, INSA Rouen Normandie, UNIROUEN, Normandie Univiversity, 76000 Rouen, France.

Department of Organic and Inorganic Chemistry, University of Extremadura, 06006 Badajoz, Spain.

出版信息

Molecules. 2024 Sep 12;29(18):4325. doi: 10.3390/molecules29184325.

Abstract

Biomass can be converted into energy/fuel by different techniques, such as pyrolysis, gasification, and others. In the case of pyrolysis, biomass can be converted into a crude bio-oil around 50-75% yield. However, the direct use of this crude bio-oil is impractical due to its high content of oxygenated compounds, which provide inferior properties compared to those of fossil-derived bio-oil, such as petroleum. Consequently, bio-oil needs to be upgraded by physical processes (filtration, emulsification, among others) and/or chemical processes (esterification, cracking, hydrodeoxygenation, among others). In contrast, hydrodeoxygenation (HDO) can effectively increase the calorific value and improve the acidity and viscosity of bio-oils through reaction pathways such as cracking, decarbonylation, decarboxylation, hydrocracking, hydrodeoxygenation, and hydrogenation, where catalysts play a crucial role. This article first focuses on the general aspects of biomass, subsequent bio-oil production, its properties, and the various methods of upgrading pyrolytic bio-oil to improve its calorific value, pH, viscosity, degree of deoxygenation (DOD), and other attributes. Secondly, particular emphasis is placed on the process of converting model molecules and bio-oil via HDO using catalysts based on nickel and nickel combined with other active elements. Through these phases, readers can gain a deeper understanding of the HDO process and the reaction mechanisms involved. Finally, the different equipment used to obtain an improved HDO product from bio-oil is discussed, providing valuable insights for the practical application of this reaction in pyrolysis bio-oil production.

摘要

生物质可以通过不同技术转化为能源/燃料,如热解、气化等。在热解过程中,生物质可以以50%-75%的产率转化为粗生物油。然而,由于其含氧量高,直接使用这种粗生物油并不实际,与化石衍生的生物油(如石油)相比,其性能较差。因此,生物油需要通过物理过程(过滤、乳化等)和/或化学过程(酯化、裂解、加氢脱氧等)进行提质升级。相比之下,加氢脱氧(HDO)可以通过裂解、脱羰、脱羧、加氢裂化、加氢脱氧和氢化等反应途径有效提高生物油的热值并改善其酸度和粘度,其中催化剂起着关键作用。本文首先关注生物质的一般方面、随后的生物油生产、其性质以及提质升级热解生物油以提高其热值、pH值、粘度、脱氧程度(DOD)和其他属性的各种方法。其次,特别强调了使用基于镍以及镍与其他活性元素组合的催化剂通过HDO转化模型分子和生物油的过程。通过这些阶段,读者可以更深入地了解HDO过程及其涉及的反应机理。最后,讨论了用于从生物油中获得改进的HDO产物的不同设备,为该反应在热解生物油生产中的实际应用提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3e3/11433775/52470ba966d9/molecules-29-04325-g022.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验