Institute for Transport Studies, University of Leeds, 36-40 University Rd, Leeds LS2 9JT, UK.
James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, United Kingdom.
Appl Ergon. 2025 Jan;122:104397. doi: 10.1016/j.apergo.2024.104397. Epub 2024 Sep 27.
User comfort in higher-level Automated Vehicles (AVs, SAE Level 4+) is crucial for public acceptance. AV driving styles, characterised by vehicle kinematic and proxemic factors, affect user comfort, with "human-like" driving styles expected to provide natural feelings. We investigated a) how the kinematic and proxemic factors of an AV's driving style affect users' evaluation of comfort and naturalness, and b) how the similarities between automated and users' manual driving styles affect user evaluation. Using a motion-based driving simulator, participants experienced three Level 4 automated driving styles: two human-like (defensive, aggressive) and one machine-like. They also manually drove the same route. Participants rated their comfort and naturalness of each automated controller, across twenty-four varied UK road sections. We calculated maximum absolute values of the kinematic and proxemic factors affecting the AV's driving styles in longitudinal, lateral, and vertical directions, for each road section, to characterise the automated driving styles. The Euclidean distance between AV and manual driving styles, in terms of kinematic and proxemic factors, was calculated to characterise the human-like driving style of the AV. We used mixed-effects models to examine a) the effect of AV's kinematic and proxemic factors on the evaluation of comfort and naturalness, and b) how similarities between manual and automated driving styles affected the evaluation. Results showed significant effects of lateral and rotational kinematic factors on comfort and naturalness, with longitudinal kinematic factors having a less prominent effect. Similarities in vehicle metrics, such as speed, longitudinal jerk, lateral offset, and yaw, between manual and automated driving styles, enhanced user comfort and naturalness. This research facilitates an understanding of how control features of AVs affect user experience, contributing to the design of user-centred controllers and better acceptance of higher-level AVs.
用户在高级别自动驾驶汽车(AV,SAE 级别 4+)中的舒适度对于公众接受度至关重要。AV 的驾驶风格受车辆运动学和接近度因素的影响,会影响用户的舒适度,人们期望“类人”的驾驶风格能带来自然的感觉。我们研究了:a)AV 驾驶风格的运动学和接近度因素如何影响用户对舒适度和自然感的评价;b)自动化驾驶风格与用户手动驾驶风格的相似程度如何影响用户评价。使用基于运动的驾驶模拟器,参与者体验了三种 4 级自动驾驶风格:两种“类人”(防御型、激进型)和一种“机器”型。他们还手动驾驶了相同的路线。参与者对每个自动驾驶控制器在 24 个不同的英国道路路段的舒适度和自然感进行了评价。我们计算了影响 AV 驾驶风格的运动学和接近度因素在纵向、横向和垂直方向上的最大绝对值,以描述自动驾驶风格。根据运动学和接近度因素,计算了 AV 与手动驾驶风格之间的欧几里得距离,以描述 AV 的“类人”驾驶风格。我们使用混合效应模型检验了:a)AV 的运动学和接近度因素对舒适度和自然感的评价的影响;b)手动和自动化驾驶风格之间的相似性如何影响评价。结果表明,横向和旋转运动学因素对舒适度和自然感有显著影响,而纵向运动学因素的影响较小。手动和自动驾驶风格之间在车辆度量方面的相似性,如速度、纵向急动度、横向偏移和偏航,提高了用户的舒适度和自然感。这项研究有助于理解 AV 控制特征如何影响用户体验,为设计以用户为中心的控制器和更好地接受高级别 AV 做出贡献。