Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 1105 North University Avenue, Ann Arbor, MI 48109, USA.
Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA.
Curr Biol. 2024 Oct 21;34(20):4677-4691.e5. doi: 10.1016/j.cub.2024.08.060. Epub 2024 Sep 27.
Apical cell-cell junctions, including adherens junctions and tight junctions, adhere epithelial cells to one another and regulate selective permeability at both bicellular junctions and tricellular junctions (TCJs). Although several specialized proteins are known to localize at TCJs, it remains unclear how actomyosin-mediated tension transmission at TCJs contributes to the maintenance of junction integrity and barrier function at these sites. Here, utilizing the embryonic epithelium of gastrula-stage Xenopus laevis embryos, we define a mechanism by which the mechanosensitive protein Vinculin helps anchor the actomyosin network at TCJs, thus maintaining TCJ integrity and barrier function. Using an optogenetic approach to acutely increase junctional tension, we find that Vinculin is mechanosensitively recruited to apical junctions immediately surrounding TCJs. In Vinculin knockdown (KD) embryos, junctional actomyosin intensity is decreased and becomes disorganized at TCJs. Using fluorescence recovery after photobleaching (FRAP), we show that Vinculin KD reduces actin stability at TCJs and destabilizes Angulin-1, a key tricellular tight junction protein involved in regulating barrier function at TCJs. When Vinculin KD embryos are subjected to increased tension, TCJ integrity is not maintained, filamentous actin (F-actin) morphology at TCJs is disrupted, and breaks in the signal of the tight junction protein ZO-1 signal are detected. Finally, using a live imaging barrier assay, we detect increased barrier leaks at TCJs in Vinculin KD embryos. Together, our findings show that Vinculin-mediated actomyosin organization is required to maintain junction integrity and barrier function at TCJs and reveal new information about the interplay between adhesion and barrier function at TCJs.
顶端细胞-细胞连接,包括黏着连接和紧密连接,将上皮细胞彼此黏附在一起,并调节双细胞连接和三细胞连接(TCJ)处的选择性通透性。尽管已知有几种专门的蛋白质定位于 TCJ,但肌动球蛋白介导的 TCJ 张力传递如何有助于维持这些部位的连接完整性和屏障功能仍不清楚。在这里,我们利用非洲爪蟾胚胎原肠胚期的胚胎上皮,定义了一种机制,即机械敏感蛋白 Vinculin 有助于将肌动球蛋白网络锚定在 TCJ 上,从而维持 TCJ 的完整性和屏障功能。利用光遗传学方法急性增加连接张力,我们发现 Vinculin 被机械敏感地募集到紧邻 TCJ 的顶端连接。在 Vinculin 敲低(KD)胚胎中,连接肌动球蛋白的强度降低,并且在 TCJ 处变得紊乱。通过荧光恢复后光漂白(FRAP),我们表明 Vinculin KD 降低了 TCJ 处的肌动蛋白稳定性,并使 Angulin-1 不稳定,Angulin-1 是一种参与调节 TCJ 屏障功能的关键三细胞紧密连接蛋白。当 Vinculin KD 胚胎受到张力增加的影响时,TCJ 的完整性无法维持,TCJ 处的丝状肌动蛋白(F-actin)形态被破坏,并且紧密连接蛋白 ZO-1 信号的断裂被检测到。最后,通过活细胞成像屏障测定,我们在 Vinculin KD 胚胎中检测到 TCJ 处的屏障泄漏增加。总之,我们的研究结果表明,Vinculin 介导的肌动球蛋白组织对于维持 TCJ 的连接完整性和屏障功能是必需的,并揭示了黏附和 TCJ 处的屏障功能之间相互作用的新信息。