Dorsey Phillip J, Lau Christina L, Chang Ti-Chiun, Doerschuk Peter C, D'Addio Suzanne M
Pharmaceutical Sciences & Clinical Supply, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA; University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
Cornell University, School of Electrical and Computer Engineering, Ithaca, NY 14853, USA.
J Pharm Sci. 2024 Dec;113(12):3413-3433. doi: 10.1016/j.xphs.2024.09.015. Epub 2024 Sep 27.
Lipid nanoparticles (LNPs) are a subset of pharmaceutical nanoparticulate formulations designed to encapsulate, stabilize, and deliver nucleic acid cargoes in vivo. Applications for LNPs include new interventions for genetic disorders, novel classes of vaccines, and alternate modes of intracellular delivery for therapeutic proteins. In the pharmaceutical industry, establishing a robust formulation and process to achieve target product performance is a critical component of drug development. Fundamental understanding of the processes for making LNPs and their interactions with biological systems have advanced considerably in the wake of the COVID-19 pandemic. Nevertheless, LNP formulation research remains largely empirical and resource intensive due to the multitude of input parameters and the complex physical phenomena that govern the processes of nanoparticle precipitation, self-assembly, structure evolution, and stability. Increasingly, artificial intelligence and machine learning (AI/ML) are being applied to improve the efficiency of research activities through in silico models and predictions, and to drive deeper fundamental understanding of experimental inputs to functional outputs. This review will identify current challenges and opportunities in the development of robust LNP formulations of nucleic acids, review studies that apply machine learning methods to experimental datasets, and provide discussion on associated data science challenges to facilitate collaboration between formulation and data scientists, aiming to accelerate the advancement of AI/ML applied to LNP formulation and process optimization.
脂质纳米颗粒(LNPs)是一类药物纳米颗粒制剂,旨在在体内包裹、稳定并递送核酸药物。LNPs的应用包括针对遗传疾病的新干预措施、新型疫苗以及治疗性蛋白质的细胞内递送替代模式。在制药行业,建立稳健的制剂和工艺以实现目标产品性能是药物开发的关键组成部分。在新冠疫情之后,对LNPs制备过程及其与生物系统相互作用的基础理解有了显著进展。然而,由于众多输入参数以及控制纳米颗粒沉淀、自组装、结构演变和稳定性过程的复杂物理现象,LNP制剂研究在很大程度上仍然是经验性的且资源密集型的。越来越多的人工智能和机器学习(AI/ML)正被用于通过计算机模拟模型和预测来提高研究活动的效率,并推动对从实验输入到功能输出的更深入基础理解。本综述将确定在开发稳健的核酸LNP制剂方面当前面临的挑战和机遇,回顾将机器学习方法应用于实验数据集的研究,并讨论相关的数据科学挑战,以促进制剂科学家和数据科学家之间的合作,旨在加速AI/ML在LNP制剂和工艺优化中的应用进展。