Suppr超能文献

过氧化氢均裂引发气相光芬顿氧化一氧化氮。

Hydrogen Peroxide Heterolytic Cleavage Induced Gas Phase Photo-Fenton Oxidation of Nitric Oxide.

机构信息

The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis Institution, Shanghai Normal University, Shanghai 200234, P. R. China.

School of Chemistry and Chemical Engineering, In-situ Center for Physical Sciences, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P.R. China.

出版信息

Environ Sci Technol. 2024 Oct 8;58(40):17797-17806. doi: 10.1021/acs.est.4c05999. Epub 2024 Sep 29.

Abstract

Nitric oxide (NO) is one of the major air pollutants that may cause ecological imbalance and severe human disease. However, the removal of NO faces challenges of low efficiency, high energy consumption, and production of toxic NO byproducts. Herein, we report an efficient *OOH intermediate-involved NO oxidation route with high NO selectivity via a gas phase photo-Fenton system. Fe single atoms (Fe SAs)-anchored NH-UiO-66(Zr) (Fe SAs@NU) was synthesized. The five-coordinated Fe SAs undergo a transient structure reconstitution during the photo-Fenton process, which enables a novel heterolytic cleavage pathway of HO to derive specific ·OOH/·O radicals as reactive oxygen species. Therefore, a high NO (550 parts per billion) removal rate of 81% (NO selectivity up to 99%) is achieved under visible-light irradiation (>420 nm). This study provides new insight for the high-performance photo-Fenton process via a transient structure reconstitution pathway for the removal of gas phase NO pollutants.

摘要

一氧化氮(NO)是主要的空气污染物之一,可能导致生态失衡和严重的人类疾病。然而,NO 的去除面临着效率低、能耗高以及产生有毒的 NO 副产物等挑战。在此,我们通过气相光芬顿体系报道了一种高效的 *OOH 中间体参与的具有高 NO 选择性的 NO 氧化途径。合成了负载 Fe 单原子(Fe SAs)的 NH-UiO-66(Zr)(Fe SAs@NU)。在光芬顿过程中,五配位的 Fe SAs 经历了瞬态结构重构,从而能够通过特殊的异裂途径产生 HO 衍生的特定·OOH/·O 自由基作为活性氧物种。因此,在可见光(>420nm)照射下,NO(550ppb)的去除率达到 81%(NO 选择性高达 99%)。该研究通过瞬态结构重构途径为气相 NO 污染物的去除提供了一种用于高性能光芬顿过程的新见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验