Wu Yinkui, Zhou Jingyuan, Li Tao, Chen Lu, Xiong Yan, Chen Yu
Institute of Intelligent Manufacturing, Mianyang Polytechnic, Mianyang, Sichuan, China.
College of Mechanics Engineering, Sichuan University, Chengdu, Sichuan, China.
Comput Methods Biomech Biomed Engin. 2024 Sep 30:1-11. doi: 10.1080/10255842.2024.2410232.
Valvular heart disease (VHD) is a major cause of loss of physical function, quality of life and longevity, and its prevalence is growing worldwide due to increased survival rates and an aging population. The most common treatment for VHD is surgical heart valve replacement with mechanical heart valves (MHVs) and bioprosthetic heart valves (BHVs), but with different limitations. Polymeric heart valves (PHVs) exhibit promising material properties, valve dynamics and biocompatibility, representing the most feasible alternative to existing artificial heart valves. However, inadequate fatigue performance remains a critical obstacle to their clinical translation. In this case, geometry and material design are essential to obtain the best mechanical properties of the PHV. In this study, we summarized the effects of optimal design of PHVs from geometrical configuration optimization (valve height, thickness and design curve) and structural material optimization (anisotropy, fiber reinforcement, variable thickness, microstructure and asymmetric optimization), and selected the parameters including Effective Orifice Area (EOA), Regurgitant fraction (RF), and Stress Distribution to compare the performance of valves. It would provide the theoretical support for the optimal design of PHVs.
心脏瓣膜病(VHD)是导致身体功能丧失、生活质量下降和寿命缩短的主要原因,由于生存率提高和人口老龄化,其在全球范围内的患病率正在上升。VHD最常见的治疗方法是使用机械心脏瓣膜(MHV)和生物人工心脏瓣膜(BHV)进行心脏瓣膜置换手术,但这两种方法都有不同的局限性。聚合物心脏瓣膜(PHV)具有良好的材料性能、瓣膜动力学和生物相容性,是现有人工心脏瓣膜最可行的替代品。然而,疲劳性能不足仍然是其临床应用的关键障碍。在这种情况下,几何形状和材料设计对于获得PHV的最佳机械性能至关重要。在本研究中,我们总结了从几何构型优化(瓣膜高度、厚度和设计曲线)和结构材料优化(各向异性、纤维增强、可变厚度、微观结构和不对称优化)对PHV进行优化设计的效果,并选择有效瓣口面积(EOA)、反流分数(RF)和应力分布等参数来比较瓣膜的性能。这将为PHV的优化设计提供理论支持。