Suppr超能文献

基于哈密顿原理的扩散驱动生物膜生长模型。

A Hamilton principle-based model for diffusion-driven biofilm growth.

机构信息

Institue of Continuum Mechanics, Leibniz University Hannover, An der Universität 1, 30823, Garbsen, Lower Saxony, Germany.

出版信息

Biomech Model Mechanobiol. 2024 Dec;23(6):2091-2113. doi: 10.1007/s10237-024-01883-x. Epub 2024 Sep 30.

Abstract

Dense communities of bacteria, also known as biofilms, are ubiquitous in all of our everyday life. They are not only always surrounding us, but are also active inside our bodies, for example in the oral cavity. While some biofilms are beneficial or even necessary for human life, others can be harmful. Therefore, it is highly important to gain an in-depth understanding of biofilms which can be achieved by in vitro or in vivo experiments. Since these experiments are often time-consuming or expensive, in silico models have proven themselves to be a viable tool in assisting the description and analysis of these complicated processes. Current biofilm growth simulations are using mainly two approaches for describing the underlying models. The volumetric approach splits the deformation tensor into a growth and an elastic part. In this approach, the mass never changes, unless some additional constraints are enforced. The density-based approach, on the other hand, uses an evolution equation to update the growing tissue by adding mass. Here, the density stays constant, and no pressure is exerted. The in silico model presented in this work combines the two approaches. Thus, it is possible to capture stresses inside of the biofilm while adding mass. Since this approach is directly derived from Hamilton's principle, it fulfills the first and second law of thermodynamics automatically, which other models need to be checked for separately. In this work, we show the derivation of the model as well as some selected numerical experiments. The numerical experiments show a good phenomenological agreement with what is to be expected from a growing biofilm. The numerical behavior is stable, and we are thus capable of solving complicated boundary value problems. In addition, the model is very reactive to different input parameters, thereby different behavior of various biofilms can be captured without modifying the model.

摘要

密集的细菌群落,也被称为生物膜,在我们的日常生活中无处不在。它们不仅总是围绕着我们,而且还在我们体内活跃,例如在口腔中。虽然一些生物膜对人类生活有益甚至是必要的,但另一些则可能有害。因此,深入了解生物膜非常重要,可以通过体外或体内实验来实现。由于这些实验通常既耗时又昂贵,因此,计算机模型已被证明是辅助描述和分析这些复杂过程的一种可行工具。目前的生物膜生长模拟主要使用两种方法来描述基础模型。体积方法将变形张量分为生长部分和弹性部分。在这种方法中,除非施加了一些额外的约束,否则质量不会改变。另一方面,基于密度的方法使用演化方程通过添加质量来更新生长组织。在这里,密度保持不变,不会施加压力。本工作中提出的计算模型结合了这两种方法。因此,可以在添加质量的同时捕捉生物膜内的应力。由于这种方法是直接从哈密顿原理推导出来的,因此它自动满足热力学第一和第二定律,而其他模型需要单独检查。在这项工作中,我们展示了模型的推导以及一些选定的数值实验。数值实验与预期的生长生物膜的情况表现出很好的现象学一致性。数值行为是稳定的,因此我们能够解决复杂的边值问题。此外,该模型对不同的输入参数非常敏感,因此可以在不修改模型的情况下捕捉到不同生物膜的不同行为。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2caa/11554842/24ba75fb1089/10237_2024_1883_Fig1_HTML.jpg

相似文献

1
A Hamilton principle-based model for diffusion-driven biofilm growth.
Biomech Model Mechanobiol. 2024 Dec;23(6):2091-2113. doi: 10.1007/s10237-024-01883-x. Epub 2024 Sep 30.
2
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
3
Individual-based modelling of biofilms.
Microbiology (Reading). 2001 Nov;147(Pt 11):2897-912. doi: 10.1099/00221287-147-11-2897.
4
Mathematical modeling of dispersal phenomenon in biofilms.
Math Biosci. 2019 Jan;307:70-87. doi: 10.1016/j.mbs.2018.07.009. Epub 2018 Aug 1.
5
Multicomponent model of deformation and detachment of a biofilm under fluid flow.
J R Soc Interface. 2015 May 6;12(106). doi: 10.1098/rsif.2015.0045.
6
Simulation of Bacillus subtilis biofilm growth on agar plate by diffusion-reaction based continuum model.
Phys Biol. 2016 Jul 19;13(4):046002. doi: 10.1088/1478-3975/13/4/046002.
7
Modeling of biofilm systems: a review.
Adv Biochem Eng Biotechnol. 2014;146:53-76. doi: 10.1007/10_2014_275.
8
Computer simulation study of early bacterial biofilm development.
Sci Rep. 2018 Mar 28;8(1):5340. doi: 10.1038/s41598-018-23524-x.
9
Modeling of the Bacillus subtilis Bacterial Biofilm Growing on an Agar Substrate.
Comput Math Methods Med. 2015;2015:581829. doi: 10.1155/2015/581829. Epub 2015 Aug 17.
10
Viscoelastic fluid description of bacterial biofilm material properties.
Biotechnol Bioeng. 2002 Nov 5;80(3):289-96. doi: 10.1002/bit.10376.

本文引用的文献

1
Numerical and experimental investigation of multi-species bacterial co-aggregation.
Sci Rep. 2023 Jul 22;13(1):11839. doi: 10.1038/s41598-023-38806-2.
2
NUFEB: A massively parallel simulator for individual-based modelling of microbial communities.
PLoS Comput Biol. 2019 Dec 12;15(12):e1007125. doi: 10.1371/journal.pcbi.1007125. eCollection 2019 Dec.
3
Self-induced mechanical stress can trigger biofilm formation in uropathogenic Escherichia coli.
Nat Commun. 2018 Oct 5;9(1):4087. doi: 10.1038/s41467-018-06552-z.
5
6
Continuum and discrete approach in modeling biofilm development and structure: a review.
J Math Biol. 2018 Mar;76(4):945-1003. doi: 10.1007/s00285-017-1165-y. Epub 2017 Jul 24.
7
Simbiotics: A Multiscale Integrative Platform for 3D Modeling of Bacterial Populations.
ACS Synth Biol. 2017 Jul 21;6(7):1194-1210. doi: 10.1021/acssynbio.6b00315. Epub 2017 May 22.
9
Environmental factors that shape biofilm formation.
Biosci Biotechnol Biochem. 2016;80(1):7-12. doi: 10.1080/09168451.2015.1058701. Epub 2015 Jun 23.
10
Material properties of biofilms-a review of methods for understanding permeability and mechanics.
Rep Prog Phys. 2015 Feb;78(3):036601. doi: 10.1088/0034-4885/78/3/036601. Epub 2015 Feb 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验