Suppr超能文献

用于硅基负极的环状醚选择性甲基化以形成高弹性固体电解质界面

Selective Methylation of Cyclic Ether Towards Highly Elastic Solid Electrolyte Interphase for Silicon-based Anodes.

作者信息

Ma Zhihao, Ruan Digen, Wang Dazhuang, Lu Zongbin, He Zixu, Guo Jiasen, Fan Jiajia, Jiang Jinyu, Wang Zihong, Luo Xuan, Ma Jun, Zhang Ze, You Yezi, Jiao Shuhong, Cao Ruiguo, Ren Xiaodi

机构信息

Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China.

CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, 230026, Hefei, Anhui, China.

出版信息

Angew Chem Int Ed Engl. 2025 Jan 10;64(2):e202414859. doi: 10.1002/anie.202414859. Epub 2024 Nov 6.

Abstract

Silicon (Si)-based anodes offer high theoretical capacity for lithium-ion batteries but suffer from severe volume changes and continuous solid electrolyte interphase (SEI) degradation. Here, we address these challenges by selective methylation of 1,3-dioxolane (DOL), thus shifting the unstable bulk polymerization to controlled interfacial reactions and resulting in a highly elastic SEI. Comparative studies of 2-methyl-1,3-dioxolane (2MDOL) and 4-methyl-1,3-dioxolane (4MDOL) reveal that 4MDOL, with its larger ring strain and more stable radical intermediates due to hyperconjugation effect, promotes the formation of high-molecular-weight polymeric species at the electrode-electrolyte interface. This elastic, polymer-rich SEI effectively accommodates volume changes of Si and inhibits continuous side reactions. Our designed electrolyte enables Si-based anode to achieve 85.4 % capacity retention after 400 cycles at 0.5 C without additives, significantly outperforming conventional carbonate-based electrolytes. Full cells also demonstrate stable long-term cycling. This work provides new insights into molecular-level electrolyte design for high-performance Si anodes, offering a promising pathway toward next-generation lithium-ion batteries with enhanced energy density and longevity.

摘要

硅基负极可为锂离子电池提供高理论容量,但存在严重的体积变化和持续的固体电解质界面(SEI)降解问题。在此,我们通过对1,3 - 二氧戊环(DOL)进行选择性甲基化来应对这些挑战,从而将不稳定的本体聚合转变为可控的界面反应,并形成高弹性的SEI。对2 - 甲基 - 1,3 - 二氧戊环(2MDOL)和4 - 甲基 - 1,3 - 二氧戊环(4MDOL)的对比研究表明,4MDOL由于超共轭效应具有更大的环张力和更稳定的自由基中间体,促进了电极 - 电解质界面处高分子量聚合物的形成。这种富含聚合物的弹性SEI有效地适应了硅的体积变化并抑制了持续的副反应。我们设计的电解质使硅基负极在0.5 C下循环400次后,无需添加剂即可实现85.4%的容量保持率,显著优于传统的碳酸酯基电解质。全电池也展示出稳定的长期循环性能。这项工作为高性能硅负极的分子水平电解质设计提供了新的见解,为下一代具有更高能量密度和更长寿命的锂离子电池开辟了一条有前景的途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验