School of Computing, SASTRA Deemed University, Thanjavur, Tamil Nadu, India.
Department of Computing and Information Systems, Sunway University, Petaling Jaya, Selangor Darul Ehsan, Malaysia.
PLoS One. 2024 Oct 1;19(10):e0308052. doi: 10.1371/journal.pone.0308052. eCollection 2024.
Recent evolution in connected devices modelled a massive stipulation for network traffic resources and classification. Software-defined networking (SDN) enables ML techniques with the Internet of Things (IoT) to automate network traffic. This helps to reduce accuracy and improves latency. Problems by conventional techniques to categorize network traffic acquired from IoT and assign resources can be resolved through SDN solutions. This manuscript proposes a proposed network traffic classification technique on IoT with SDN called Gauss Markov and Flow-balanced Vector Radial Learning (GM-FVRL). With the network traffic features acquired from the IoT devices, SDN-enabled Gauss Markov Correlation-based IoT Network Traffic Feature Extraction is applied to extort relevant network aspects. Next, the flow-balanced radial-based ML model for network traffic categorization uses the relevant extracted network traffic features. With the aid of flow, the balanced radial basis function reduces the influence of noise due to distinct network flow. This helps to improve accuracy and minimize latency. Due to this, better precision and recall is ensured. Performance of our method has been evaluated utilizing a scheme using an SDN traffic dataset. The results show that our method classifies the network traffic with high classification accuracy and minimum latency, ensuring better precision and recall.
近年来,联网设备的发展对网络流量资源和分类提出了巨大的要求。软件定义网络 (SDN) 使物联网中的机器学习技术能够实现网络流量的自动化。这有助于提高准确性和降低延迟。通过 SDN 解决方案可以解决传统技术在对物联网获取的网络流量进行分类和分配资源方面遇到的问题。本文提出了一种基于 SDN 的物联网网络流量分类技术,称为高斯马尔可夫和流平衡向量径向学习 (GM-FVRL)。通过从物联网设备获取的网络流量特征,应用 SDN 支持的基于高斯马尔可夫相关的物联网网络流量特征提取来提取相关的网络方面。接下来,用于网络流量分类的流平衡径向 ML 模型使用相关提取的网络流量特征。借助流量,平衡的径向基函数减少了由于不同网络流量而产生的噪声的影响。这有助于提高准确性和最小化延迟。因此,可以确保更好的精度和召回率。利用 SDN 流量数据集的方案评估了我们方法的性能。结果表明,我们的方法能够以较高的分类准确性和最小的延迟对网络流量进行分类,从而确保了更好的精度和召回率。