Hetemäki Iivo, Arstila T Petteri, Kekäläinen Eliisa
Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
Immunology. 2025 Jan;174(1):17-29. doi: 10.1111/imm.13866. Epub 2024 Oct 1.
Transcription factor Helios, encoded by the IKZF2 gene, has an important role in regulatory T cells by stabilizing their suppressive phenotype. While Helios is prominently expressed in regulatory T cells, its expression extends beyond to include effector T cells, follicular regulatory T cells, B cells, and innate-like lymphocyte populations. Recent characterizations of patients with inborn error of immunity due to damaging IKZF2 variants coupled with translational research on lymphocytes from healthy individuals, have increased our understanding on Helios' multifaceted role in controlling the human adaptive immune system. A less studied role for Helios beyond the stabilizing of regulatory T cells has emerged in directing effector T cell maturation. In the absence of functional Helios, effector T cells acquire more inflammatory phenotype and are prone to senescence. Loss of Helios expression disrupts the regulation of the germinal centre reaction, often resulting in either hypogammaglobulinemia or B cell autoimmunity. This review summarizes findings from studies in both mice and men offering a comprehensive understanding of the impact of the transcription factor Helios on the adaptive immune system.
由IKZF2基因编码的转录因子Helios通过稳定调节性T细胞的抑制表型,在调节性T细胞中发挥重要作用。虽然Helios在调节性T细胞中显著表达,但其表达范围还扩展到效应T细胞、滤泡调节性T细胞、B细胞和先天性淋巴细胞群体。最近,由于IKZF2变体受损导致先天性免疫缺陷患者的特征以及对健康个体淋巴细胞的转化研究,增加了我们对Helios在控制人类适应性免疫系统中多方面作用的理解。Helios在调节性T细胞稳定之外的一个较少研究的作用是指导效应T细胞成熟。在缺乏功能性Helios的情况下,效应T细胞获得更多的炎症表型并易于衰老。Helios表达的丧失会破坏生发中心反应的调节,常常导致低丙种球蛋白血症或B细胞自身免疫。这篇综述总结了小鼠和人类研究的结果,全面阐述了转录因子Helios对适应性免疫系统的影响。