Yang Dan, Fang Zhou, Ji Yongsheng, Yang Ying, Hou Jingrong, Zhang Zhenyan, Du Weichen, Qi Xiaoqun, Zhu Zhenglu, Zhang Renyuan, Hu Pei, Qie Long, Huang Yunhui
Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China.
State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
Angew Chem Int Ed Engl. 2024 Dec 2;63(49):e202409929. doi: 10.1002/anie.202409929. Epub 2024 Nov 6.
The sustainable development of lithium iron phosphate (LFP) batteries calls for efficient recycling technologies for spent LFP (SLFP). Even for the advanced direct material regeneration (DMR) method, multiple steps including separation, regeneration, and electrode refabrication processes are still needed. To circumvent these intricacies, new regeneration methods that allow direct electrode reuse (DER) by rejuvenating SLFP electrodes without damaging its structure are desired. Here, a 0.1 M lithium triethyl borohydride/tetrahydrofuran solution, which has the proper reductive capability to reduce Fe in SLFP to Fe without alloying with the aluminum current collector, is selected as the lithiation/regeneration reagent to restock the Li loss and regenerate SLFP electrodes. By soaking the SLFP electrodes in the lithiation solution, we successfully rejuvenated the crystal structure and electrochemical activity of SLFP electrodes with structural integrity within only 6 minutes at room temperature. When being directly reused, the regenerated LFP electrodes deliver a high specific capacity of 162.6 mAh g even after being exposed to air for 3 months. The DER strategy presents significant economic and environmental benefits compared with the DMR method. This research provides a timely and innovative solution for recycling spent blade batteries using large-sized LFP electrodes, boosting the closed-loop development of LFP batteries.
磷酸铁锂(LFP)电池的可持续发展需要高效的废旧LFP(SLFP)回收技术。即使对于先进的直接材料再生(DMR)方法,仍需要包括分离、再生和电极再制造过程在内的多个步骤。为了规避这些复杂性,需要新的再生方法,通过使SLFP电极恢复活力而不破坏其结构来实现直接电极再利用(DER)。在此,选择一种0.1 M的三乙基硼氢化锂/四氢呋喃溶液作为锂化/再生试剂,该溶液具有适当的还原能力,可将SLFP中的Fe还原为Fe,而不与铝集流体合金化,以补充Li损失并再生SLFP电极。通过将SLFP电极浸泡在锂化溶液中,我们在室温下仅6分钟内就成功恢复了SLFP电极的晶体结构和电化学活性,且结构完整。当直接再利用时,即使在暴露于空气中3个月后,再生的LFP电极仍具有162.6 mAh g的高比容量。与DMR方法相比,DER策略具有显著的经济和环境效益。本研究为使用大型LFP电极回收废旧刀片电池提供了及时且创新的解决方案,推动了LFP电池的闭环发展。