Suppr超能文献

神经动力学与癫痫发作相关性:破伤风毒素诱导癫痫大鼠模型中神经群体模型的研究进展

Neural dynamics and seizure correlations: Insights from neural mass models in a Tetanus Toxin rat model of epilepsy.

机构信息

Department of Biomedical Engineering, The University of Melbourne, Victoria, Australia; Graeme Clark Institute for Biomedical Engineering, The University of Melbourne, Victoria, Australia.

Department of Biomedical Engineering, The University of Melbourne, Victoria, Australia.

出版信息

Neural Netw. 2024 Dec;180:106746. doi: 10.1016/j.neunet.2024.106746. Epub 2024 Sep 23.

Abstract

This study focuses on the use of a neural mass model to investigate potential relationships between functional connectivity and seizure frequency in epilepsy. We fitted a three-layer neural mass model of a cortical column to intracranial EEG (iEEG) data from a Tetanus Toxin rat model of epilepsy, which also included responses to periodic electrical stimulation. Our results show that some of the connectivity weights between different neural populations correlate significantly with the number of seizures each day, offering valuable insights into the dynamics of neural circuits during epileptogenesis. We also simulated single-pulse electrical stimulation of the neuronal populations to observe their responses after the connectivity weights were optimized to fit background (non-seizure) EEG data. The recovery time, defined as the time from stimulation until the membrane potential returns to baseline, was measured as a representation of the critical slowing down phenomenon observed in nonlinear systems operating near a bifurcation boundary. The results revealed that recovery times in the responses of the computational model fitted to the EEG data were longer during 5 min periods preceding seizures compared to 1 hr before seizures in four out of six rats. Analysis of the iEEG recorded in response to electrical stimulation revealed results similar to the computational model in four out of six rats. This study supports the potential use of this computational model as a model-based biomarker for seizure prediction when direct electrical stimulation to the brain is not feasible.

摘要

本研究旨在利用神经质量模型来研究癫痫症中功能连接与癫痫发作频率之间的潜在关系。我们将一个皮质柱的三层神经质量模型拟合到癫痫的破伤风毒素大鼠模型的颅内 EEG(iEEG)数据中,其中还包括对周期性电刺激的反应。我们的结果表明,不同神经群体之间的一些连接权重与每天的癫痫发作次数显著相关,为癫痫发生期间神经回路的动力学提供了有价值的见解。我们还模拟了对神经元群体的单脉冲电刺激,以观察在将连接权重优化以适应背景(非癫痫发作) EEG 数据后它们的反应。恢复时间定义为从刺激到膜电位恢复到基线的时间,作为在分岔边界附近运行的非线性系统中观察到的关键减速现象的代表。结果表明,在六只大鼠中的四只大鼠中,与癫痫发作前 1 小时相比,在癫痫发作前 5 分钟期间拟合 EEG 数据的计算模型的反应中恢复时间更长。对电刺激反应记录的 iEEG 的分析表明,在六只大鼠中的四只大鼠中,计算模型的结果与实验模型相似。这项研究支持了当直接对大脑进行电刺激不可行时,将这种计算模型用作基于模型的癫痫发作预测生物标志物的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验