Suppr超能文献

源自螺旋烯基杂环卡宾(NHCs)的手性有机金属配合物:设计、结构多样性以及手性光学和光物理性质

Chiral Organometallic Complexes Derived from Helicenic -Heterocyclic Carbenes (NHCs): Design, Structural Diversity, and Chiroptical and Photophysical Properties.

作者信息

Kundu Debsouri, Rio Natalia Del, Crassous Jeanne

机构信息

Université de Rennes, CNRS, ISCR - UMR 6226, 35000 Rennes, France.

出版信息

Acc Chem Res. 2024 Oct 15;57(20):2941-2952. doi: 10.1021/acs.accounts.4c00275. Epub 2024 Oct 3.

Abstract

ConspectusRecently, helicene derivatives have emerged as an important class of molecules with potential applications spanning over asymmetric catalysis, biological activity, magnetism, spin filtering, solar cells, and polymer science. To harness their full potential, especially as emissive components in circularly polarized organic light-emitting diodes (CP-OLEDs), generating structural chemical diversity and understanding the resulting photophysical and chiroptical properties are crucial. In this Account, we shed light on chemical engineering combining helicene and -heterocyclic carbene (NHC) chemistries to create transition-metal complexes with unique architectures and describe their photophysical and chiroptical attributes. The σ-donating and π-accepting capabilities of the helically chiral π-conjugated NHCs endow the complexes with remarkable structural and electronic features. These characteristics manifest in phenomena such as chirality induction, very long-lived phosphorescence, and strong chiroptical signatures (electronic circular dichroism and circularly polarized luminescence).We describe the different classes of ligands primarily developed in our group by classifying them according to their connection between the helicenic moiety and the imidazole precursor. This connection is essential in determining the degree of π-conjugation and characterizing the emissive state. We comprehensively discuss 6-coordinate, 4-coordinate, and 2-coordinate complexes, delving into their structural nuances and examining how the interplay between metals and auxiliary ligands shapes their photophysical properties, with interpretations enriched by DFT calculations. Helicenes are known to promote intersystem crossing thanks to strong spin-orbit coupling, while metals offer robust frameworks leading to a variety of molecular architectures with specific topologies together with distinct excited-state properties. The electronic configurations and energy levels of the ligand and metal orbitals thus significantly modulate the photophysical and chiroptical behaviors of these complexes. In-depth analysis of chiroptical properties, notably electronic circular dichroism and circularly polarized luminescence, emphasizes the influence of different stereogenic elements on the chiroptical responses across various energy ranges with appealing "match-mismatch" effects. Finally, we describe future prospects of helicene NHCs, particularly in the context of emerging research on cost-effective and abundant transition metals for materials science and for photocatalysis. Indeed, the inherent long-lived MLCT, excited-state delocalization, structural rigidity, and intrinsic chirality of these complexes present intriguing avenues for future investigations.

摘要

综述

最近,螺旋烯衍生物已成为一类重要的分子,其潜在应用涵盖不对称催化、生物活性、磁性、自旋过滤、太阳能电池和聚合物科学等领域。为了充分发挥其潜力,尤其是作为圆偏振有机发光二极管(CP - OLED)中的发光组件,产生结构化学多样性并理解由此产生的光物理和手性光学性质至关重要。在本综述中,我们阐述了结合螺旋烯和氮杂环卡宾(NHC)化学的化学工程,以创建具有独特结构的过渡金属配合物,并描述它们的光物理和手性光学特性。螺旋手性π共轭NHC的σ供电子和π吸电子能力赋予了配合物显著的结构和电子特征。这些特性体现在手性诱导、极长寿命的磷光以及强烈的手性光学特征(电子圆二色性和圆偏振发光)等现象中。

我们根据螺旋烯部分与咪唑前体之间的连接方式对主要在我们小组中开发的不同类型的配体进行分类描述。这种连接对于确定π共轭程度和表征发光状态至关重要。我们全面讨论了六配位、四配位和二配位配合物,深入研究它们的结构细微差别,并研究金属与辅助配体之间的相互作用如何塑造它们的光物理性质,同时通过DFT计算进行丰富的解释。众所周知,螺旋烯由于强自旋 - 轨道耦合促进系间窜越,而金属提供了强大的框架,导致具有特定拓扑结构的各种分子结构以及独特的激发态性质。因此,配体和金属轨道的电子构型和能级显著调节这些配合物的光物理和手性光学行为。对手性光学性质的深入分析,特别是电子圆二色性和圆偏振发光,强调了不同立体化学元素对不同能量范围内手性光学响应的影响,并具有引人注目的“匹配 - 不匹配”效应。最后,我们描述了螺旋烯NHC的未来前景,特别是在材料科学和光催化中关于经济高效且丰富的过渡金属的新兴研究背景下。实际上,这些配合物固有的长寿命MLCT、激发态离域、结构刚性和固有手性为未来的研究提供了有趣的途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验