Dai Chengbiao, Huang Chengkai, Ye Meiying, Liu Jinhua, Cheng Heyong
College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou 311121, China.
J Org Chem. 2024 Oct 18;89(20):14818-14830. doi: 10.1021/acs.joc.4c01568. Epub 2024 Oct 3.
Isoindolinones, bearing both γ-lactam and aromatic rings, draw extensive interest in organic, pharmaceutical, and medicinal communities as they are important structural motifs in many natural products, bioactive compounds, and pharmaceuticals. As the main contributor to isoindolinone synthesis, metal catalysis is associated with many drawbacks including essential use of toxic/precious metals and excessive additives, high reaction temperatures, specially predesigned starting materials, and long reaction times (typically 8-30 h). In this study, we developed a catalyst- and additive-free, minute-scale, and high-yield microdroplet method for tricomponent isoindolinone synthesis at mild temperatures. By taking advantage of the astonishing reaction acceleration (1.9 × 10-9.4 × 10 acceleration factor range with a typical rate acceleration factor of 1.51 × 10 for the prototype reaction as the ratio of rate constants by microdroplet and bulk phase), 12 3-thioisoindolinones and two tricyclic γ-lactams were synthesized using various 2-acylbenzaldehydes, amines, and thiols with satisfactory yields ranging from 85% to 97% as well as a scale-up rate of 3.49 g h. Because of the advantages (no use of any catalysts or additives, mild temperature, rapid and satisfactory conversion, broad substrate scope, and gram scalability), the microdroplet method represents an attractive alternative to metal catalysis for laboratory synthesis of isoindolinones and their derivatives.
异吲哚啉酮同时含有γ-内酰胺和芳香环,由于它们是许多天然产物、生物活性化合物和药物中的重要结构单元,因此在有机、制药和医学领域引起了广泛关注。作为异吲哚啉酮合成的主要方法,金属催化存在许多缺点,包括必须使用有毒/贵金属和过量添加剂、反应温度高、需要特殊设计的起始原料以及反应时间长(通常为8-30小时)。在本研究中,我们开发了一种无催化剂和添加剂、微尺度且高产率的微滴法,用于在温和温度下合成三组分异吲哚啉酮。利用惊人的反应加速效果(微滴相和本体相的速率常数之比,原型反应的典型速率加速因子为1.51×10,加速因子范围为1.9×10-9.4×10),使用各种2-酰基苯甲醛、胺和硫醇合成了12种3-硫代异吲哚啉酮和两种三环γ-内酰胺,产率令人满意,范围为85%至97%,放大速率为3.49 g/h。由于具有无需使用任何催化剂或添加剂、温度温和、转化迅速且令人满意、底物范围广以及克级规模放大等优点,微滴法是实验室合成异吲哚啉酮及其衍生物时金属催化的一种有吸引力的替代方法。